In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [2]:
#I worked with James Amarel on this assignement
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [ ]:
assert True # leave this cell to grade the above integral
In [8]:
# YOUR CODE HERE
#raise NotImplementedError()
def integrand(x, a):
return np.sqrt(a**2 - x**2)
def integral_approx(a):
I, e = integrate.quad(integrand, 0, a, args=(a,))
return I
def integral_exact(a):
return (np.pi*a**2)/4
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [ ]:
assert True # leave this cell to grade the above integral
In [13]:
# YOUR CODE HERE
#raise NotImplementedError()
def integrand(x):
return np.sin(x)**2
def integral_approx():
I, e = integrate.quad(integrand, 0, np.pi/2)
return I
def integral_exact():
return np.pi/4
print("Numerical: ", integral_approx())
print("Exact : ", integral_exact())
In [ ]:
assert True # leave this cell to grade the above integral
In [34]:
# YOUR CODE HERE
#raise NotImplementedError()
def integrand(x,a,b):
return 1.0/(a+b*np.sin(x))
def integral_approx(a,b):
I, e = integrate.quad(integrand, 0, 2*np.pi, args=(a,b))
return I
def integral_exact(a,b):
return (2*np.pi)/np.sqrt(a**2-b**2)
print("Numerical: ", integral_approx(10.0,1.0))
print("Exact : ", integral_exact(10.0,1.0))
In [ ]:
assert True # leave this cell to grade the above integral
In [41]:
# YOUR CODE HERE
#raise NotImplementedError()
def integrand(x, a):
return np.e**(-1.0*a*(x**2))
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.sqrt(np.pi/(a))
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [ ]:
assert True # leave this cell to grade the above integral
In [43]:
# YOUR CODE HERE
#raise NotImplementedError()
def integrand(x):
return 1.0/np.cosh(x)
def integral_approx():
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, -np.inf, np.inf)
return I
def integral_exact():
return np.pi
print("Numerical: ", integral_approx())
print("Exact : ", integral_exact())
In [ ]:
assert True # leave this cell to grade the above integral