In [13]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:c
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [15]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print('Numerical:', integral_approx(1.0))
print('Exact:', integral_exact(1.0))
In [16]:
assert True # leave this cell to grade the above integral
In [17]:
def integrand1(x,p):
return (x**(p-1))/(1+x)
def integral_approx1(p):
I,e=integrate.quad(integrand1, 0, np.inf, args=(p,))
return I
def integral_exact1(p):
return np.pi/(np.sin(p*np.pi))
print('Numerical:', integral_approx1(0.5))
print('Exact:', integral_exact1(0.5))
In [18]:
assert True # leave this cell to grade the above integral
In [19]:
def integrand2(x,a):
return (a**2-x**2)**(1/2)
def integral_approx2(a):
I,e=integrate.quad(integrand2, 0,a,args=(a,))
return I
def integral_exact2(a):
return np.pi*(a**2)/4
print('Numerical:', integral_approx2(1.0))
print('Exact:', integral_exact2(1.0))
In [20]:
assert True # leave this cell to grade the above integral
In [24]:
def integrand3(x,a):
return 1/((a**2-x**2)**(1/2))
def integral_approx3(a):
I,e=integrate.quad(integrand3, 0,np.inf,args=(a,))
return I
def integral_exact3(a):
return np.pi/2
#print('Numerical:', integral_approx3(1.0))
#print('Exact:', integral_exact3(1.0))
#this integral seems to be flawed, for there will always be an x which makes the denominator 0 and causes the function being integrated to be discontinuos
In [ ]:
assert True # leave this cell to grade the above integral
In [27]:
def integrand4(x,p):
return (np.sin(p*x)**2)/(x**2)
def integral_approx4(p):
I,e=integrate.quad(integrand4, 0,np.inf,args=(p,))
return I
def integral_exact4(p):
return np.pi*p/2
print('Numerical:', integral_approx4(1.0))
print('Exact:', integral_exact4(1.0))
In [ ]:
assert True # leave this cell to grade the above integral
In [30]:
def integrand5(x,p):
return (1-np.cos(p*x))/(x**2)
def integral_approx5(p):
I,e=integrate.quad(integrand5, 0,np.inf,args=(p,))
return I
def integral_exact5(p):
return np.pi*p/2
print('Numerical:', integral_approx5(1.0))
print('Exact:', integral_exact5(1.0))
In [ ]:
assert True # leave this cell to grade the above integral