In [1]:
    
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
    
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand function that computes the value of the integrand.integral_approx funciton that uses scipy.integrate.quad to peform the integral.integral_exact function that computes the exact value of the integral.integral_approx and integral_exact for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [ ]:
    
def integrand(x, a):
    return 1.0/(x**2 + a**2)
def integral_approx(a):
    # Use the args keyword argument to feed extra arguments to your integrand
    I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
    return I
def integral_exact(a):
    return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact    : ", integral_exact(1.0))
    
In [ ]:
    
assert True # leave this cell to grade the above integral
    
In [2]:
    
def integrand(x, p):
    return x**(p-1)/(1+x)
def integral_approx(p):
    I, e = integrate.quad(integrand, 0, np.inf, args=(p,))
    return I
def integral_exact(p):
    return np.pi/np.sin(p*np.pi)
print("Numerical: ", integral_approx(.5))
print("Exact    : ", integral_exact(.5))
    
    
In [3]:
    
assert True # leave this cell to grade the above integral
    
In [5]:
    
def integrand(x, a, b):
    return 1/(a+b*np.sin(x))
def integral_approx(a,b):
    I, e = integrate.quad(integrand, 0, 2*np.pi, args=(a,b,))
    return I
def integral_exact(a,b):
    return 2*np.pi/(a**2+b**2)**.5
print("Numerical: ", integral_approx(.5, .5))
print("Exact    : ", integral_exact(.5, .5))
    
    
In [6]:
    
assert True # leave this cell to grade the above integral
    
In [7]:
    
def integrand(x, a):
    return np.exp(-a*x**2)
def integral_approx(a):
    I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
    return I
def integral_exact(a):
    return .5*(np.pi/a)**.5
print("Numerical: ", integral_approx(.5))
print("Exact    : ", integral_exact(.5))
    
    
In [8]:
    
assert True # leave this cell to grade the above integral
    
In [11]:
    
def integrand(x):
    return np.log(x)/(1+x)
def integral_approx():
    I, e = integrate.quad(integrand, 0, 1)
    return I
def integral_exact():
    return -np.pi**2/12
print("Numerical: ", integral_approx())
print("Exact    : ", integral_exact())
    
    
In [12]:
    
assert True # leave this cell to grade the above integral
    
In [13]:
    
def integrand(x):
    return 1/np.cosh(x)
def integral_approx():
    I, e = integrate.quad(integrand, -np.inf, np.inf)
    return I
def integral_exact():
    return np.pi
print("Numerical: ", integral_approx())
print("Exact    : ", integral_exact())
    
    
In [ ]:
    
assert True # leave this cell to grade the above integral