In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [ ]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [ ]:
assert True # leave this cell to grade the above integral
In [2]:
def integrand(x, p):
return x**(p-1)/(1+x)
def integral_approx(p):
I, e = integrate.quad(integrand, 0, np.inf, args=(p,))
return I
def integral_exact(p):
return np.pi/np.sin(p*np.pi)
print("Numerical: ", integral_approx(.5))
print("Exact : ", integral_exact(.5))
In [3]:
assert True # leave this cell to grade the above integral
In [5]:
def integrand(x, a, b):
return 1/(a+b*np.sin(x))
def integral_approx(a,b):
I, e = integrate.quad(integrand, 0, 2*np.pi, args=(a,b,))
return I
def integral_exact(a,b):
return 2*np.pi/(a**2+b**2)**.5
print("Numerical: ", integral_approx(.5, .5))
print("Exact : ", integral_exact(.5, .5))
In [6]:
assert True # leave this cell to grade the above integral
In [7]:
def integrand(x, a):
return np.exp(-a*x**2)
def integral_approx(a):
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return .5*(np.pi/a)**.5
print("Numerical: ", integral_approx(.5))
print("Exact : ", integral_exact(.5))
In [8]:
assert True # leave this cell to grade the above integral
In [11]:
def integrand(x):
return np.log(x)/(1+x)
def integral_approx():
I, e = integrate.quad(integrand, 0, 1)
return I
def integral_exact():
return -np.pi**2/12
print("Numerical: ", integral_approx())
print("Exact : ", integral_exact())
In [12]:
assert True # leave this cell to grade the above integral
In [13]:
def integrand(x):
return 1/np.cosh(x)
def integral_approx():
I, e = integrate.quad(integrand, -np.inf, np.inf)
return I
def integral_exact():
return np.pi
print("Numerical: ", integral_approx())
print("Exact : ", integral_exact())
In [ ]:
assert True # leave this cell to grade the above integral