In [33]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [34]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [35]:
assert True # leave this cell to grade the above integral
In [36]:
def integrand1(x, p):
return np.sin(p*x)**2/(x**2)
def integral_approx1(p):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand1, 0, np.inf, args=(p,))
return I
def integral_exact1(p):
return p*np.pi/2
print("Numerical: ", integral_approx1(1.0))
print("Exact : ", integral_exact1(1.0))
In [37]:
assert True # leave this cell to grade the above integral
In [38]:
def integrand2(x):
return x/(np.exp(x)-1)
def integral_approx2():
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand2, 0, np.inf)
return I
def integral_exact2():
return np.pi**2/6
print("Numerical: ", integral_approx2())
print("Exact : ", integral_exact2())
In [39]:
assert True # leave this cell to grade the above integral
In [40]:
def integrand3(x, a):
return 1.0/((a**2-x**2 )**(.5))
def integral_approx3(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand3, 0, a, args=(a,))
return I
def integral_exact3(a):
return np.pi/2
print("Numerical: ", integral_approx3(17))
print("Exact : ", integral_exact3(17))
In [41]:
assert True # leave this cell to grade the above integral
In [42]:
def integrand4(x, m, a):
return (x*np.sin(m*x))/(x**2+a**2)
def integral_approx4(m, a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand4, 0, np.inf, args=(m,a,))
return I
def integral_exact4(m, a):
return (np.pi/2)*np.exp(-1*m*a)
print("Numerical: ", integral_approx4(.001,.001))
print("Exact : ", integral_exact4(.001,.001))
In [43]:
assert True # leave this cell to grade the above integral
In [44]:
def integrand5(x):
return (np.exp(-1*(x**2)))
def integral_approx5():
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand5, -1*np.inf, np.inf)
return I
def integral_exact5():
return np.pi**(1/2)
print("Numerical: ", integral_approx5())
print("Exact : ", integral_exact5())
In [45]:
assert True # leave this cell to grade the above integral