In [6]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [7]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [8]:
assert True # leave this cell to grade the above integral
$I_{1} = \int_{0}^{\infty}\frac{x}{\sinh ax}dx = \frac{\pi^2}{4a^2}$
In [9]:
def integrand1(x,a):
return x/np.sinh(a*x)
def integral_approx1(a):
I1,e1 = integrate.quad(integrand1,0,np.inf,args = (a,))
return I1
def integral_exact1(a):
return np.pi ** 2/(4*a**2)
print("Numerical: ", integral_approx1(1.0))
print("Exact : ", integral_exact1(1.0))
In [10]:
assert True # leave this cell to grade the above integral
$\int_{0}^{1}\frac{\ln(1+x)}{x}dx = \frac{\pi^2}{12}$
In [11]:
def integrand2(x,a):
return np.log(1+x)/x
def integral_approx2(a):
I2,e2 = integrate.quad(integrand2,0,1,args = (a,))
return I2
def integral_exact2(a):
return np.pi**2/12
print("Numerical: ", integral_approx2(1.0))
print("Exact : ", integral_exact2(1.0))
In [12]:
assert True # leave this cell to grade the above integral
$\int_{0}^{a}\sqrt {a^2-x^2}dx = \frac{\pi a^2}{4}$
In [13]:
def integrand3(x,a):
return np.sqrt(a**2-x**2)
def integral_approx3(a):
I3,e3 = integrate.quad(integrand3,0,a,args = (a,))
return I3
def integral_exact3(a):
return np.pi * a**2/4
print("Numerical: ", integral_approx3(1.0))
print("Exact : ", integral_exact3(1.0))
In [14]:
assert True # leave this cell to grade the above integral
$\int_{0}^{\infty}\frac{\sin^2px}{x^2}dx = \frac{\pi p}{2}$
In [15]:
def integrand4(x,a):
return (np.sin(a*x))**2/x**2
def integral_approx4(a):
I4,e4 = integrate.quad(integrand4,0,np.inf,args = (a,))
return I4
def integral_exact4(a):
return np.pi*a/2
print("Numerical: ", integral_approx4(1.0))
print("Exact : ", integral_exact4(1.0))
In [16]:
assert True # leave this cell to grade the above integral
$\int_{0}^{\infty}\frac{1-\cos px}{x^2} = \frac{\pi p}{2}$
In [17]:
def integrand5(x,a):
return (1-np.cos(a*x))/x**2
def integral_approx5(a):
I5,e5 = integrate.quad(integrand5,0,np.inf,args = (a,))
return I5
def integral_exact5(a):
return np.pi *a/2
print("Numerical: ", integral_approx5(1.0))
print("Exact : ", integral_exact5(1.0))
In [18]:
assert True # leave this cell to grade the above integral