In [26]:
    
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
    
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand function that computes the value of the integrand.integral_approx funciton that uses scipy.integrate.quad to peform the integral.integral_exact function that computes the exact value of the integral.integral_approx and integral_exact for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [27]:
    
def integrand(x, a):
    return 1.0/(x**2 + a**2)
def integral_approx(a):
    # Use the args keyword argument to feed extra arguments to your integrand
    I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
    return I
def integral_exact(a):
    return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact    : ", integral_exact(1.0))
    
    
In [28]:
    
assert True # leave this cell to grade the above integral
    
In [29]:
    
def integrand(x,a):
    return np.sqrt(a**2-x**2)
def integral_approx(a):
    I,e=integrate.quad(integrand, 0,a,args=(a,))
    return I
def integral_exact(a):
    return np.pi*a**2/4
print("Numerical: ", integral_approx(1.0))
print("Exact: ", integral_exact(1.0))
    
    
In [30]:
    
assert True # leave this cell to grade the above integral
    
In [31]:
    
def integrand(x,a,b):
    return 1.0/(a+b*np.sin(x))
def integral_approx(a,b):
    I,e=integrate.quad(integrand,0,2*np.pi,args=(a,b))
    return I
def integral_exact(a,b):
    return 2*np.pi/(np.sqrt(a**2-b**2))
print("Numerical: ", integral_approx(2.0,1.0))
print("Exact: ", integral_exact(2.0, 1.0))
    
    
In [32]:
    
assert True # leave this cell to grade the above integral
    
In [33]:
    
def integrand(x,a,b):
    return np.exp(-a*x)*np.cos(b*x)
def integral_approx(a,b):
    I,e = integrate.quad(integrand,0,np.inf,  args=(a,b))
    return I
def integral_exact(a,b):
    return a/(a**2+b**2)
print("Numerical: ", integral_approx(1.0,1.0))
print("Exact: ", integral_exact(1.0,1.0))
    
    
In [34]:
    
assert True # leave this cell to grade the above integral
    
In [35]:
    
def integrand(x):
    return np.exp(-x**2)
def integral_approx(x):
    I,e= integrate.quad(integrand,-1*np.inf,np.inf)
    return I
def integral_exact():
    return np.sqrt(np.pi)
print("Numerical: ", integral_approx(1.0))
print("Exact: ", integral_exact())
    
    
In [36]:
    
assert True # leave this cell to grade the above integral
    
In [37]:
    
def integrand(x,a):
    return np.exp(-a*x**2)
def integral_approx(a):
    I,e=integrate.quad(integrand, 0 , np.inf, args=(a,))
    return I
def integral_exact(a):
    return 0.5*np.sqrt(np.pi/a)
print("Numerical: ", integral_approx(2.0))
print("Exact: ", integral_exact(2.0))
    
    
In [38]:
    
assert True # leave this cell to grade the above integral