In [26]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [27]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [28]:
assert True # leave this cell to grade the above integral
In [29]:
def integrand(x,a):
return np.sqrt(a**2-x**2)
def integral_approx(a):
I,e=integrate.quad(integrand, 0,a,args=(a,))
return I
def integral_exact(a):
return np.pi*a**2/4
print("Numerical: ", integral_approx(1.0))
print("Exact: ", integral_exact(1.0))
In [30]:
assert True # leave this cell to grade the above integral
In [31]:
def integrand(x,a,b):
return 1.0/(a+b*np.sin(x))
def integral_approx(a,b):
I,e=integrate.quad(integrand,0,2*np.pi,args=(a,b))
return I
def integral_exact(a,b):
return 2*np.pi/(np.sqrt(a**2-b**2))
print("Numerical: ", integral_approx(2.0,1.0))
print("Exact: ", integral_exact(2.0, 1.0))
In [32]:
assert True # leave this cell to grade the above integral
In [33]:
def integrand(x,a,b):
return np.exp(-a*x)*np.cos(b*x)
def integral_approx(a,b):
I,e = integrate.quad(integrand,0,np.inf, args=(a,b))
return I
def integral_exact(a,b):
return a/(a**2+b**2)
print("Numerical: ", integral_approx(1.0,1.0))
print("Exact: ", integral_exact(1.0,1.0))
In [34]:
assert True # leave this cell to grade the above integral
In [35]:
def integrand(x):
return np.exp(-x**2)
def integral_approx(x):
I,e= integrate.quad(integrand,-1*np.inf,np.inf)
return I
def integral_exact():
return np.sqrt(np.pi)
print("Numerical: ", integral_approx(1.0))
print("Exact: ", integral_exact())
In [36]:
assert True # leave this cell to grade the above integral
In [37]:
def integrand(x,a):
return np.exp(-a*x**2)
def integral_approx(a):
I,e=integrate.quad(integrand, 0 , np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.sqrt(np.pi/a)
print("Numerical: ", integral_approx(2.0))
print("Exact: ", integral_exact(2.0))
In [38]:
assert True # leave this cell to grade the above integral