In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
In [4]:
def X(x):
return x**2
In [6]:
I,e=integrate.quad(X,0,3)
I
Out[6]:
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [2]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [3]:
assert True # leave this cell to grade the above integral
In [4]:
def integrand(x,a):
return (a**2-x**2)**(1/2)
def integral_approx(a):
I1,e1=integrate.quad(integrand,0,a,args=(a,))
return I1
def integral_exact(a):
return (np.pi*a**2)/4
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [5]:
assert True # leave this cell to grade the above integral
In [6]:
def integrand(x):
return np.sin(x)**2
def integral_approx():
I2,e2=integrate.quad(integrand,0,np.pi/2)
return I2
def integral_exact():
return np.pi/4
print("Numerical: ", integral_approx())
print("Exact : ", integral_exact())
In [7]:
assert True # leave this cell to grade the above integral
In [8]:
def integrand(x,a,b):
return np.exp(-a*x)*np.cos(b*x)
def integral_approx(a,b):
I3,e3=integrate.quad(integrand,0,np.inf,args=(a,b,))
return I3
def integral_exact(a,b):
return a/(a**2+b**2)
print("Numerical: ", integral_approx(1.0,1.0))
print("Exact : ", integral_exact(1.0,1.0))
In [9]:
assert True # leave this cell to grade the above integral
In [10]:
def integrand(x,a,b):
return np.exp(-a*x**2-(b/x**2))
def integral_approx(a,b):
I4,e4=integrate.quad(integrand,0,np.inf,args=(a,b,))
return I4
def integral_exact(a,b):
return (1/2)*(np.pi/a)**(1/2)*np.exp(-2*(a*b)**(1/2))
print("Numerical: ", integral_approx(1.0,1.0))
print("Exact : ", integral_exact(1.0,1.0))
In [11]:
assert True # leave this cell to grade the above integral
In [12]:
def integrand(x,a):
return x/(np.sinh(a*x))
def integral_approx(a):
I5,e5=integrate.quad(integrand,0,np.inf,args=(a,))
return I5
def integral_exact(a):
return np.pi**2/4*a**2
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [13]:
assert True # leave this cell to grade the above integral