In [3]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [4]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [5]:
assert True # leave this cell to grade the above integral
In [28]:
# YOUR CODE HERE
def integrand1(x, a, b, c):
return np.exp(-(a*x**2 + b*x + c))
def integral1_approx(a, b, c):
I, e = integrate.quad(integrand1, -np.inf, np.inf, args=(a,b,c,))
return I
def integral1_exact(a, b, c):
return np.sqrt(np.pi/a) * np.exp((b**2 - 4*a*c)/(4*a))
print("Numerical: ", integral1_approx(1.0, 1.0, 1.0))
print("Exact: ", integral1_exact(1.0, 1.0, 1.0))
In [14]:
assert True # leave this cell to grade the above integral
In [15]:
# YOUR CODE HERE
def integrand2(x, p):
return (np.sin(p*x))**2
def integral2_approx(p):
I, e = integrate.quad(integrand2, 0, 0.5*np.pi, args=(p,))
return I
def integral2_exact(p):
return 0.25*np.pi
print("Numerical: ", integral2_approx(1.0))
print("Exact: ", integral2_exact(1.0))
#numerical result is around 10* actual result
In [16]:
assert True # leave this cell to grade the above integral
In [18]:
def integrand3(x, p):
return (1 - np.cos(p*x))/x**2
def integral3_approx(p):
I, e = integrate.quad(integrand3, 0, np.inf, args=(p,))
return I
def integral3_exact(p):
return 0.5*p*np.pi
print("Numerical: ", integral3_approx(3.0))
print("Exact: ", integral3_exact(3.0))
In [ ]:
assert True # leave this cell to grade the above integral
In [20]:
def integrand4(x):
return np.log(x)/(1 + x)
def integral4_approx():
I, e = integrate.quad(integrand4, 0, 1)
return I
def integral4_exact():
return -(np.pi**2)/12
print("Numerical: ", integral4_approx())
print("Exact: ", integral4_exact())
In [ ]:
assert True # leave this cell to grade the above integral
In [22]:
def integrand5(x, a):
return x/np.sinh(a*x)
def integral5_approx(a):
I, e = integrate.quad(integrand5, 0, np.inf, args=(a,))
return I
def integral5_exact(a):
return (np.pi**2)/(4*a**2)
print("Numerical: ", integral5_approx(2.0))
print("Exact: ", integral5_exact(2.0))
In [ ]:
assert True # leave this cell to grade the above integral