Note: You should first click on "Cell
→ Run All
" in order that the plots get generated.
In [1]:
%pylab notebook
%precision %.4g
Out[1]:
A 480-V, 60 Hz, 400-hp 0.8-PF-leading eight-pole $\Delta$-connected synchronous motor has a synchronous reactance of $0.6\,\Omega$ and negligible armature resistance. Ignore its friction, windage, and core losses for the purposes of this problem. Assume that $|\vec{E}_A|$ is directly proportional to the field current $I_F$ (in other words, assume that the motor operates in the linear part of the magnetization curve), and that $|\vec{E}_A| = 480\,V$ when $I_F = 4\,A$.
In [2]:
Vt = 480 # [V]
PF = 0.8
fse = 60 # [Hz]
p = 8
Pout = 400 * 746 # [W] using the official "electrical horsepower" conversion
Xs = 0.6 # [Ohm]
If this motor is initially supplying 400 hp at 0.8 PF lagging.
If $|\vec{E}_A|$ is increased by 30 percent.
In [3]:
n_m = 120 * fse / p
print('''
n_m = {:.0f} r/min
==============='''.format(n_m))
The line current flow under these circumstances is:
$$I_L = \frac{P}{\sqrt{3}V_T PF}$$
In [4]:
Pin = Pout
il = Pin / (sqrt(3) * Vt * PF)
il # [A]
Out[4]:
Because the motor is $\Delta$-connected, the corresponding phase current is:
In [5]:
ia = il / sqrt(3)
ia # [A]
Out[5]:
The angle of the current is:
In [6]:
Ia_angle = -arccos(PF)
Ia_angle /pi *180 # [degrees]
Out[6]:
In [7]:
Ia = ia * (cos(Ia_angle) + sin(Ia_angle)*1j)
print('Ia = {:.0f} A ∠{:.2f}°'.format(abs(Ia), Ia_angle / pi *180))
The internal generated voltage $\vec{E}_A$ is: $$\vec{E}_A = \vec{V}_\phi - jX_S\vec{I}_A$$
In [8]:
EA = Vt - Xs * 1j * Ia
EA_angle = arctan(EA.imag/EA.real)
print('''
EA = {:.0f} V ∠{:.1f}°
=================='''.format(abs(EA), EA_angle/pi*180))
In [9]:
w_m = n_m * (1.0 / 60.0) * (2.0*pi/1.0)
tau_ind = Pout / w_m
print('''
tau_ind = {:.0f} Nm
================='''.format(tau_ind))
The maximum possible induced torque for the motor at this field setting is the maximum possible power divided by $\omega_m$:
$$\tau_\text{ind,max} = \frac{3V_\phi E_A}{\omega_mX_S}$$
In [10]:
tau_ind_max = (3*Vt*abs(EA)) / (w_m * Xs)
print('''
tau_ind_max = {:.0f} Nm
======================'''.format(tau_ind_max))
The current operating torque is about
In [11]:
tau_ind/tau_ind_max
Out[11]:
times the maximum possible torque.
In [12]:
Ea_2 = 1.30 * abs(EA)
Ea_2 # [V]
Out[12]:
In [13]:
delta_1 = EA_angle
delta_2 = arcsin(abs(EA) / Ea_2 * sin(delta_1))
delta_2/pi *180 # [degrees]
Out[13]:
The new armature current is: $$\vec{I}_{A2} = \frac{\vec{V}_\phi - \vec{E}_{A2}}{jX_S}$$
In [14]:
EA2 = Ea_2 * (cos(delta_2)+sin(delta_2)*1j)
Ia_2 = (Vt - EA2) / (Xs*1j)
Ia_2_angle = arctan(Ia_2.imag/Ia_2.real)
PF2 = cos(Ia_2_angle)
print('''
Ia_2 = {:.0f} A ∠{:.2f}°
====================
PF2 = {:.3f}
============'''.format(abs(Ia_2), Ia_2_angle/pi*180, PF2))
Initialize values:
In [15]:
Ea_plot = linspace(0.90, 1.70, 81) * EA
Calculate $\delta_2$
In [16]:
delta_plot = arcsin(abs(EA) / Ea_plot * sin(delta_1))
Calculate the phasor $E_A$
In [17]:
EA_plot = Ea_plot * (cos(delta_plot)+sin(delta_plot)*1j)
Calculate $I_A$
In [18]:
Ia_plot = (Vt - Ea_plot) / (Xs*1j)
Plot the v-curve
In [19]:
title(r'Armature current versus $E_A$')
xlabel(r'$E_A$ [kV]')
ylabel(r'$I_A$ [A]')
plot(abs(EA_plot)/1000,abs(Ia_plot), linewidth = 2)
grid()