Excercises Electric Machinery Fundamentals

Chapter 4

Problem 4-8


In [1]:
%pylab inline
%precision 1


Populating the interactive namespace from numpy and matplotlib
Out[1]:
'%.1f'

Description

A 200-MVA, 12-kV, 0.85-PF-lagging, 50-Hz, 20-pole, Y-connected water turbine generator has a per-unit synchronous reactance of 0.9 and a per-unit armature resistance of 0.1. This generator is operating in parallel with a large power system (infinite bus).


In [2]:
S   = 200e6 # [VA]
Vl  =  12e3 # [V]
PF  = 0.85  # lagging
fse = 50 # [Hz]
p   = 20
ra = 0.1 # [pu]
xs = 0.9 # [pu]

(a)

  • What is the speed of rotation of this generator’s shaft?

(b)

  • What is the magnitude of the internal generated voltage $E_A$ at rated conditions?

(c)

  • What is the torque angle of the generator at rated conditions?

(d)

  • What are the values of the generator’s synchronous reactance and armature resistance in ohms?

(e)

If the field current is held constant,

  • What is the maximum power possible out of this generator?
  • How much reserve power or torque does this generator have at full load?

(f)

At the absolute maximum power possible,

  • How much reactive power will this generator be supplying or consuming?
  • Sketch the corresponding phasor diagram. (Assume $I_F$ is still unchanged.)

SOLUTION

(a)

The speed of rotation of this generator’s shaft is:

$$n_\text{sync} = \frac{120f_{se}}{P}$$

In [3]:
n_sync = 120*fse / p
print('''
n_sync = {:.0f} r/min
=================='''.format(n_sync))


n_sync = 300 r/min
==================

(b)

The per-unit phase voltage at rated conditions is $\vec{v}_\phi = 1.0 \angle 0^\circ$


In [4]:
vphase = 1.0

and the per-unit phase current $\vec{i}_A$ at rated conditions is


In [5]:
ia_angle = -arccos(PF)  # negative because of lagging PF
ia = 1.0 * (cos(ia_angle) + sin(ia_angle)*1j)
print('ia = {:.1f} pu ∠{:.1f}°'.format(abs(ia), ia_angle/pi*180))


ia = 1.0 pu ∠-31.8°

, so the per-unit internal generated voltage is:

$$\vec{e_A} = \vec{v_\phi} + r_A\vec{i_A} + jx_S\vec{I_A}$$

In [6]:
ea = vphase + ra*ia + xs*1j*ia
ea_angle = arctan(ea.imag/ea.real)
print('ea = {:.2f} pu ∠{:.1f}°'.format(abs(ea), ea_angle/pi*180))


ea = 1.71 pu ∠24.6°

The base phase voltage is:


In [7]:
Vphase_base = Vl / sqrt(3)
print('Vphase_base = {:.0f}V'.format(Vphase_base))


Vphase_base = 6928V

so the internal generated voltage is:


In [8]:
EA = ea * Vphase_base
print('''
EA = {:.0f} V ∠{:.1f}°
==================='''.format(abs(EA), ea_angle/pi*180))


EA = 11876 V ∠24.6°
===================

(c)

The torque angle of the generator is:


In [9]:
delta = ea_angle
print('''
δ = {:.1f}°
========='''.format(delta/pi *180))


δ = 24.6°
=========

(d)

The base impedance of the generator is:

$$Z_\text{base} = \frac{3V^2_{\phi_\text{base}}}{S_\text{base}}$$

In [10]:
Zbase = (3*Vphase_base**2) / S
print('Zbase = {:.2f} Ω'.format(Zbase))


Zbase = 0.72 Ω

Therefore the synchronous reactance is:


In [11]:
Xs = xs * Zbase
print('''
Xs = {:.3f} Ω
============'''.format(Xs))


Xs = 0.648 Ω
============

and the armature resistance is:


In [12]:
Ra = ra * Zbase
print('''
Ra = {:.3f} Ω
============'''.format(Ra))


Ra = 0.072 Ω
============

(e)

If the field current is held constant (and the armature resistance is ignored), the power out of this generator is given by:

$$P = \frac{3V_\phi E_A}{X_S}\sin{\delta}$$

The max power is given by:

$$P_\text{max} = \frac{3V_\phi E_A}{X_S}\sin{90°}$$

In [13]:
Pmax = (3*Vphase_base*abs(EA)) / Xs * sin(pi/2)
print('''
Pmax = {:.0f} MW
============='''.format(Pmax/1e6))


Pmax = 381 MW
=============

Since the full load power is:


In [14]:
P = S*PF
P/1e6


Out[14]:
170.0

MW, this generator is supplying


In [15]:
P/Pmax*100


Out[15]:
44.6

percent of the maximum possible power at full load conditions.

(f)

At the maximum power possible, the torque angle $\delta = 90^\circ$, so the phasor $\vec{E}_A$ will be at an angle of 90°, and the current flowing will be:

$$\vec{E}_A = \vec{V}_\phi + R_A\vec{I}_A + jX_S\vec{I}_A$$$$\vec{I}_A = \frac{\vec{E}_A - \vec{V}_\phi}{R_A + jX_S}$$

In [16]:
EA_angle_f = pi / 2 # [rad]
EA_f = abs(EA) * (cos(EA_angle_f) + sin(EA_angle_f)*1j)
Ia_f = (EA_f - Vphase_base) / (Ra + Xs *1j)
Ia_angle_f = arctan(Ia_f.imag/Ia_f.real)
print('Ia_f = {:.0f} A ∠{:.1f}°'.format(abs(Ia_f), Ia_angle_f/pi*180))


Ia_f = 21088 A ∠36.6°

The impedance angle $\theta$ is:


In [17]:
Ia_angle_f/pi*180


Out[17]:
36.6

degrees, and the reactive power supplied by the generator is:

$$Q = 3V_\phi I_A\sin{\theta}$$

In [18]:
Q = 3 * Vphase_base * abs(Ia_f) * sin(Ia_angle_f)
print('''
Q = {:.0f} var
==========='''.format(Q/1e6))


Q = 261 var
===========