In [1]:
%pylab inline
%precision 1
Out[1]:
A 200-MVA, 12-kV, 0.85-PF-lagging, 50-Hz, 20-pole, Y-connected water turbine generator has a per-unit synchronous reactance of 0.9 and a per-unit armature resistance of 0.1. This generator is operating in parallel with a large power system (infinite bus).
In [2]:
S = 200e6 # [VA]
Vl = 12e3 # [V]
PF = 0.85 # lagging
fse = 50 # [Hz]
p = 20
ra = 0.1 # [pu]
xs = 0.9 # [pu]
If the field current is held constant,
At the absolute maximum power possible,
In [3]:
n_sync = 120*fse / p
print('''
n_sync = {:.0f} r/min
=================='''.format(n_sync))
In [4]:
vphase = 1.0
and the per-unit phase current $\vec{i}_A$ at rated conditions is
In [5]:
ia_angle = -arccos(PF) # negative because of lagging PF
ia = 1.0 * (cos(ia_angle) + sin(ia_angle)*1j)
print('ia = {:.1f} pu ∠{:.1f}°'.format(abs(ia), ia_angle/pi*180))
, so the per-unit internal generated voltage is:
$$\vec{e_A} = \vec{v_\phi} + r_A\vec{i_A} + jx_S\vec{I_A}$$
In [6]:
ea = vphase + ra*ia + xs*1j*ia
ea_angle = arctan(ea.imag/ea.real)
print('ea = {:.2f} pu ∠{:.1f}°'.format(abs(ea), ea_angle/pi*180))
The base phase voltage is:
In [7]:
Vphase_base = Vl / sqrt(3)
print('Vphase_base = {:.0f}V'.format(Vphase_base))
so the internal generated voltage is:
In [8]:
EA = ea * Vphase_base
print('''
EA = {:.0f} V ∠{:.1f}°
==================='''.format(abs(EA), ea_angle/pi*180))
In [9]:
delta = ea_angle
print('''
δ = {:.1f}°
========='''.format(delta/pi *180))
In [10]:
Zbase = (3*Vphase_base**2) / S
print('Zbase = {:.2f} Ω'.format(Zbase))
Therefore the synchronous reactance is:
In [11]:
Xs = xs * Zbase
print('''
Xs = {:.3f} Ω
============'''.format(Xs))
and the armature resistance is:
In [12]:
Ra = ra * Zbase
print('''
Ra = {:.3f} Ω
============'''.format(Ra))
In [13]:
Pmax = (3*Vphase_base*abs(EA)) / Xs * sin(pi/2)
print('''
Pmax = {:.0f} MW
============='''.format(Pmax/1e6))
Since the full load power is:
In [14]:
P = S*PF
P/1e6
Out[14]:
MW, this generator is supplying
In [15]:
P/Pmax*100
Out[15]:
percent of the maximum possible power at full load conditions.
In [16]:
EA_angle_f = pi / 2 # [rad]
EA_f = abs(EA) * (cos(EA_angle_f) + sin(EA_angle_f)*1j)
Ia_f = (EA_f - Vphase_base) / (Ra + Xs *1j)
Ia_angle_f = arctan(Ia_f.imag/Ia_f.real)
print('Ia_f = {:.0f} A ∠{:.1f}°'.format(abs(Ia_f), Ia_angle_f/pi*180))
The impedance angle $\theta$ is:
In [17]:
Ia_angle_f/pi*180
Out[17]:
degrees, and the reactive power supplied by the generator is:
$$Q = 3V_\phi I_A\sin{\theta}$$
In [18]:
Q = 3 * Vphase_base * abs(Ia_f) * sin(Ia_angle_f)
print('''
Q = {:.0f} var
==========='''.format(Q/1e6))