In [1]:
%pylab inline
%precision %.4g
import cmath
Assume that the motor of Problem 5-1 is operating at rated conditions.
In [2]:
Vt = 480 # [V]
PF = 0.8
fse = 60 # [Hz]
p = 8.0
Pout = 400 * 746 # [W]
Xs = 0.6 # [Ohm]
In [3]:
Pin = Pout
il = Pin / (sqrt(3) * Vt * PF)
il # [A]
Out[3]:
Because the motor is $\Delta$-connected, the corresponding phase current is:
In [4]:
ia = il / sqrt(3)
ia # [A]
Out[4]:
The angle of the current is:
In [5]:
Ia_angle = arccos(PF)
Ia_angle /pi *180 # [degrees]
Out[5]:
In [6]:
Ia = ia * (cos(Ia_angle) + sin(Ia_angle)*1j)
print('''
Ia = {:.0f} A ∠{:.2f}°
=================='''.format(abs(Ia), Ia_angle / pi *180))
The internal generated voltage $\vec{E}_A$ is:
$$\vec{E}_A = \vec{V}_\phi - jX_S\vec{I}_A$$
In [7]:
EA = Vt - Xs * 1j * Ia
EA_angle = arctan(EA.imag/EA.real)
print('''
Ea = {:.0f} V ∠{:.1f}°
=================='''.format(abs(EA), EA_angle / pi *180))
The field current is directly proportional to $|\vec{E}_A|$, which = 480V when $I_F = 4 A$. The required field current is:
$$\frac{|\vec{E}_{A2}|}{|\vec{E}_{A1}|} = \frac{I_{F2}}{I_{F1}}$$
In [8]:
If1 = 4 # [A]
Ea1 = 480 # [V]
Ea2 = abs(EA)
If2 = (Ea2/Ea1) * If1
print('''
If2 = {:.2f} A
============'''.format(If2))
In [9]:
delta_b = 0*pi/180 # [rad]
EA_b = abs(EA) *(cos(delta_b) + sin(delta_b)*1j)
EA_b_angle = arctan(EA_b.imag/EA_b.real)
Ia_b = (Vt - EA_b) / (Xs*1j)
Ia_b_angle = arctan(Ia_b.imag/Ia_b.real) # poosible warning might occur because of division by zero
print('''
EA_b = {:.1f} ∠{:>2.0f}°
Ia_b = {:.1f} ∠{:>2.0f}°
=================='''.format(abs(EA_b), EA_b_angle/pi*180,
abs(Ia_b), Ia_b_angle/pi*180))