Excercises Electric Machinery Fundamentals

Chapter 5

Problem 5-7


In [1]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

Description

A 208-V Y-connected synchronous motor is drawing 50 A at unity power factor from a 208-V power system. The field current flowing under these conditions is 2.7 A. Its synchronous reactance is $1.6\,\Omega$. Assume a linear open-circuit characteristic.


In [2]:
Vt = 208   # [V]
Ia =  50   # [A]
Xs =   1.6 # [Ohm]
Ra =   0   # [Ohm]
PF2 =  0.8
If_1 = 2.7 # [A]

(a)

  • Find $\vec{V}_\phi$ and $\vec{E}_A$ for these conditions.

(b)

  • Find the torque angle $\delta$ .

(c)

  • What is the static stability power limit under these conditions?

(d)

  • How much field current would be required to make the motor operate at 0.80 PF leading?

(e)

  • What is the new torque angle in part (d)?

SOLUTION

(a)

The phase voltage of this motor is $V_\phi = 120 V$, and the armature current is $\vec{I}_A = 50\,A \angle 0°$ . Therefore, the internal generated voltage is:

$$\vec{E}_A = \vec{V}_\phi - R_A \vec{I}_A - jX_S \vec{I}_A$$

In [3]:
Vphi = Vt / sqrt(3)
EA = Vphi - Ra*Ia - Xs*1j*Ia
EA_angle = arctan(EA.imag/EA.real)
print('''
EA = {:.0f} V ∠{:.1f}°
=================='''.format(abs(EA), EA_angle/pi*180))


EA = 144 V ∠-33.7°
==================

(b)

The tor que angle $\delta$ of this machine is


In [4]:
delta = EA_angle
print('''
δ = {:.1f}°
=========='''.format(delta/pi*180))


δ = -33.7°
==========

(c)

The static stability power limit is given by

$$P_\text{max} = \frac{3V_\phi E_A}{X_S}$$

In [5]:
Pmax = (3*Vphi*abs(EA)) / Xs
print('''
Pmax = {:.1f} kW
=============='''.format(Pmax/1000))


Pmax = 32.5 kW
==============

(d)

A phasor diagram of the motor operating at a power factor of 0.78 leading is shown below.

Since the power supplied by the motor is constant, the quantity $I_A cos \theta$ , which is directly proportional to power, must be constant. Therefore,


In [6]:
theta1 = 0 # [rad]
theta2 = arccos(PF2)
Ia2 = Ia*cos(theta1) / cos(theta2)
IA2 = Ia2 * (cos(theta2)+sin(theta2)*1j)
IA2_angle = theta2
print('IA2 = {:.1f} A ∠{:.2f}°'.format(abs(IA2), IA2_angle/pi*180))


IA2 = 62.5 A ∠36.87°

The internal generated voltage required to produce this current would be:

$$\vec{E}_{A2} = \vec{V}_\phi - R_A \vec{I}_{A2} - jX_S \vec{I}_{A2}$$

In [7]:
EA2 = Vphi - Ra*IA2 - Xs*1j*IA2
EA2_angle = arctan(EA2.imag/EA2.real)
print('EA2 = {:.0f} V ∠{:.1f}°'.format(abs(EA2), EA2_angle/pi*180))


EA2 = 197 V ∠-24.0°

The internal generated voltage $E_A$ is directly proportional to the field flux, and we have assumed in this problem that the flux is directly proportional to the fiel d current. Therefore, the required field current is:

$$I_{F2} = \frac{E_{A2}}{E_{A1}}I_{F1}$$

In [8]:
If_2 = abs(EA2)/abs(EA) * If_1
print('''
If_2 = {:.2f} A
============='''.format(If_2))


If_2 = 3.69 A
=============

(e)

The new torque angle $\delta$ of this machine is


In [9]:
delta2 = EA2_angle
print('''
δ_2 = {:.1f}°
============'''.format(delta2/pi*180))


δ_2 = -24.0°
============