In [1]:
%pylab inline
A 208-V Y-connected synchronous motor is drawing 50 A at unity power factor from a 208-V power system. The field current flowing under these conditions is 2.7 A. Its synchronous reactance is $1.6\,\Omega$. Assume a linear open-circuit characteristic.
In [2]:
Vt = 208 # [V]
Ia = 50 # [A]
Xs = 1.6 # [Ohm]
Ra = 0 # [Ohm]
PF2 = 0.8
If_1 = 2.7 # [A]
In [3]:
Vphi = Vt / sqrt(3)
EA = Vphi - Ra*Ia - Xs*1j*Ia
EA_angle = arctan(EA.imag/EA.real)
print('''
EA = {:.0f} V ∠{:.1f}°
=================='''.format(abs(EA), EA_angle/pi*180))
In [4]:
delta = EA_angle
print('''
δ = {:.1f}°
=========='''.format(delta/pi*180))
In [5]:
Pmax = (3*Vphi*abs(EA)) / Xs
print('''
Pmax = {:.1f} kW
=============='''.format(Pmax/1000))
Since the power supplied by the motor is constant, the quantity $I_A cos \theta$ , which is directly proportional to power, must be constant. Therefore,
In [6]:
theta1 = 0 # [rad]
theta2 = arccos(PF2)
Ia2 = Ia*cos(theta1) / cos(theta2)
IA2 = Ia2 * (cos(theta2)+sin(theta2)*1j)
IA2_angle = theta2
print('IA2 = {:.1f} A ∠{:.2f}°'.format(abs(IA2), IA2_angle/pi*180))
The internal generated voltage required to produce this current would be:
$$\vec{E}_{A2} = \vec{V}_\phi - R_A \vec{I}_{A2} - jX_S \vec{I}_{A2}$$
In [7]:
EA2 = Vphi - Ra*IA2 - Xs*1j*IA2
EA2_angle = arctan(EA2.imag/EA2.real)
print('EA2 = {:.0f} V ∠{:.1f}°'.format(abs(EA2), EA2_angle/pi*180))
The internal generated voltage $E_A$ is directly proportional to the field flux, and we have assumed in this problem that the flux is directly proportional to the fiel d current. Therefore, the required field current is:
$$I_{F2} = \frac{E_{A2}}{E_{A1}}I_{F1}$$
In [8]:
If_2 = abs(EA2)/abs(EA) * If_1
print('''
If_2 = {:.2f} A
============='''.format(If_2))
In [9]:
delta2 = EA2_angle
print('''
δ_2 = {:.1f}°
============'''.format(delta2/pi*180))