Excercises Electric Machinery Fundamentals

Chapter 6

Problem 6-12


In [1]:
%pylab inline
%precision 4


Populating the interactive namespace from numpy and matplotlib
Out[1]:
'%.4f'

Description

The power crossing the air gap of a 60 Hz, four-pole induction motor is 25 kW, and the power converted from electrical to mechanical form in the motor is 23.2 kW.

(a)

  • What is the slip of the motor at this time?

(b)

  • What is the induced torque in this motor?

(c)

  • Assuming that the mechanical losses are 300 W at this slip, what is the load torque of this motor?

In [2]:
fse   = 60     # [Hz]
p     = 4          
Pag   = 25.0e3 # [W]
Pconv = 23.2e3 # [W]
Pm    = 300    # [W]

SOLUTION

(a)

The synchronous speed of this motor is:

$$ n_\text{sync} = \frac{60 \cdot f_{se}}{p/2} $$

In [3]:
n_sync = 60 * fse // (p//2)  # // is used for integer division in Python 3
n_sync


Out[3]:
1800

The power converted forom the electrical to the mechanical form is:

$$P_\text{conv} = (1-s)P_\text{AG}\quad \leadsto \quad s = 1 - \frac{P_\text{conv}}{P_\text{AG}} $$

In [4]:
s = 1 - Pconv/Pag
s


Out[4]:
0.0720

(b)

The speed of the motor is:

$$ n_m = (1-s) n_\text{sync} $$

In [5]:
n_m = (1-s)*n_sync
n_m


Out[5]:
1670.4000

The induced torque of the motor is:

$$\tau_\text{ind} = \frac{P_\text{conv}}{\omega_m}$$

In [6]:
Tind = Pconv/(2*pi/60 * n_m)
Tind # [Nm]


Out[6]:
132.6291

Alternately, the induced torque can be found as:

$$\tau_\text{ind} = \frac{P_\text{AG}}{\omega_\text{sync}}$$

In [7]:
Tind = Pag/(2*pi/60 * n_sync)
Tind # [Nm]


Out[7]:
132.6291

(c)

The output power of this motor is:

$$ P_\text{out} = P_\text{conv} -P_\text{mech} $$

In [8]:
Pout = Pconv-Pm
Pout # [W]


Out[8]:
22900.0000

And the output torque:

$$\tau_\text{out} = \frac{P_\text{out}}{\omega_m}$$

In [9]:
Tout = Pout / (2*pi/60 * n_m)
Tout


Out[9]:
130.9141