In [1]:
%pylab inline
A 208-V four-pole 60-Hz Y-connected wound-rotor induction motor is rated at 30 hp. Its equivalent circuit components are:
Stator | Rotor | Power |
---|---|---|
$R_1 = 0.10\,\Omega$ | $R_2 = 0.07\,\Omega$ | $P_\text{core} = 400\,W$ |
$X_1 = 0.21\,\Omega$ | $X_2 = 0.21\,\Omega$ | $P_\text{f\&w} = 500\,W$ |
$X_M = 10.0\,\Omega$ | $P_\text{misc}\approx 0$ |
In [2]:
R1 = 0.10 # [Ohm]
R2 = 0.07 # [Ohm]
Xm = 10.0 # [Ohm]
X1 = 0.21 # [Ohm]
X2 = 0.21 # [Ohm]
Pfw = 500 # [W]
Pmisc = 0 # [W]
Pcore = 400 # [W]
V = 208 # [V]
For a slip of 0.05, find
The equivalent circuit of this induction motor is shown below:
The equivalent impedance of the rotor circuit in parallel with $jX_M$ is:
$$Z_F = \frac{1}{\frac{1}{jX_M}+\frac{1}{Z_2}}$$
In [3]:
s = 0.05
Z2 = R2 + R2*(1-s)/s + X2*1j
Zf = 1/(1/(Xm*1j) + 1/Z2)
Zf_angle = arctan(Zf.imag / Zf.real)
print('Zf = ({:.3f}) Ω = {:.3f} Ω ∠{:.1f}°'.format(Zf, abs(Zf), Zf_angle/pi*180))
The phase voltage is
In [4]:
Vphi = V / sqrt(3)
print('Vphi = {:.0f} V'.format(Vphi))
so line current $I_L$ is: $$I_L = I_A = \frac{V_\phi}{R_1+jX_1+R_F+jX_F}$$
In [5]:
Rf = Zf.real
Xf = Zf.imag
Ia = Vphi / (R1 + X1*1j + Rf + Xf*1j)
Ia_angle = arctan(Ia.imag/Ia.real)
Il = Ia
print('''
Il = Ia = {:.1f} A ∠{:.1f}°
========================''' .format(abs(Il), Ia_angle/pi *180))
In [6]:
Pscl = 3 * abs(Ia)**2 * R1
print('''
Pscl = {:.0f} W
============='''.format(Pscl))
This however is not done here and we simply substract the core losses directly.
In [7]:
Pag = 3 * abs(Ia)**2 * Rf - Pcore
print('''
Pag = {:.1f} kW
============='''.format(Pag/1000))
In [8]:
Pconv = (1 - s) * Pag
print('''
Pconv = {:.1f} kW
==============='''.format(Pconv/1000))
In [9]:
n_sync = 1800 # [r/min]
w_sync = n_sync * (2.0*pi /1.0) * (1.0 / 60.0)
tau_ind = Pag / w_sync
print('''
tau_ind = {:.1f} Nm
=================='''.format(tau_ind))
In [10]:
Pout = Pconv - Pfw - Pcore - Pmisc
print('Pout = {:.1f} kW'.format(Pout/1000))
The output speed is:
$$n_m = (1-s)n_\text{sync}$$
In [11]:
n_m = (1 - s) * n_sync
print('n_m = {:.0f} r/min'.format(n_m))
Therefore the load torque is:
$$\tau_\text{load} = \frac{P_\text{OUT}}{\omega_m}$$
In [12]:
w_m = n_m * (2.0*pi /1.0) * (1.0 / 60.0)
tau_load = Pout / w_m
print('''
tau_load = {:.1f} Nm
==================='''.format(tau_load))
In [13]:
eta = Pout / (3 * Vphi * abs(Ia) * cos(Ia_angle)) * 100
print('''
η = {:.1f} %
=========='''.format(eta))
In [14]:
w_m = n_m * (2*pi / 60.0)
print('''
w_m = {:.0f} rad/s
==============='''.format(w_m))