In [1]:
%pylab inline
For the motor in Problem 6-5
In [2]:
R1 = 0.10 # [Ohm]
R2 = 0.07 # [Ohm]
Xm = 10.0 # [Ohm]
X1 = 0.21 # [Ohm]
X2 = 0.21 # [Ohm]
Pmech = 500 # [W]
Pmisc = 0 # [W]
Pcore = 400 # [W]
Vphi = 120 # [V]
w_sync = 188.5 # [rad/s]
The slip at pullout torque is found by calculating the Thevenin equivalent of the input circuit from the rotor back to the power supply, and then using that with the rotor circuit model.
In [3]:
Zth = (Xm*1j * (R1 + X1*1j)) / (R1 + (X1+Xm)*1j)
Zth_angle = arctan(Zth.imag/Zth.real)
print('Zth = ({:.4f})Ω = {:.3f} Ω ∠{:.1f}°'.format(Zth, abs(Zth), Zth_angle/pi*180))
In [4]:
Vth = Xm*1j / (R1 + (X1+Xm)*1j) * Vphi
Vth_angle = arctan(Vth.imag/Vth.real)
print('Zth = {:.1f} V ∠{:.1f}°'.format(abs(Vth), Vth_angle/pi*180))
The slip at pullout torque is: $$S_\text{max} = \frac{R_2}{\sqrt{R_{TH}^2+(X_{TH}+X_2)^2}}$$
In [5]:
Rth = Zth.real
Xth = Zth.imag
s_max = R2 / sqrt(Rth**2 + (Xth+X2)**2)
print('''
s_max = {:.3f}
============='''.format(s_max))
The pullout torque of the motor is:
$$\tau_\text{max} = \frac{3V_{TH}^2}{2\omega_\text{sync}[R_{TH}+\sqrt{R_{TH}^2+(X_{TH}+X_2)^2}]}$$
In [6]:
tau_max = (3* abs(Vth)**2) / (2 * w_sync*(Rth + sqrt(Rth**2 + (Xth+X2)**2)))
print('''
tau_max = {:.0f} Nm
================'''.format(tau_max))