# Integration Exercise 2

## Imports



In [ ]:

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate



## Indefinite integrals

Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.

Find five of these integrals and perform the following steps:

1. Typeset the integral using LateX in a Markdown cell.
2. Define an integrand function that computes the value of the integrand.
3. Define an integral_approx funciton that uses scipy.integrate.quad to peform the integral.
4. Define an integral_exact function that computes the exact value of the integral.
5. Call and print the return value of integral_approx and integral_exact for one set of parameters.

Here is an example to show what your solutions should look like:

### Example

Here is the integral I am performing:

$$I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a}$$


In [ ]:

def integrand(x, a):
return 1.0/(x**2 + a**2)

def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I

def integral_exact(a):
return 0.5*np.pi/a

print("Numerical: ", integral_approx(1.0))
print("Exact    : ", integral_exact(1.0))




In [ ]:

assert True # leave this cell to grade the above integral



### Integral 1



In [ ]:

raise NotImplementedError()




In [ ]:

assert True # leave this cell to grade the above integral



### Integral 2



In [ ]:

raise NotImplementedError()




In [ ]:

assert True # leave this cell to grade the above integral



### Integral 3



In [ ]:

raise NotImplementedError()




In [ ]:

assert True # leave this cell to grade the above integral



### Integral 4



In [ ]:

raise NotImplementedError()




In [ ]:

assert True # leave this cell to grade the above integral



### Integral 5



In [ ]:

raise NotImplementedError()




In [ ]:

assert True # leave this cell to grade the above integral