In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy import integrate
Here is a table of definite integrals. Many of these integrals has a number of parameters $a$, $b$, etc.
Find five of these integrals and perform the following steps:
integrand
function that computes the value of the integrand.integral_approx
funciton that uses scipy.integrate.quad
to peform the integral.integral_exact
function that computes the exact value of the integral.integral_approx
and integral_exact
for one set of parameters.Here is an example to show what your solutions should look like:
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{dx}{x^2 + a^2} = \frac{\pi}{2a} $$
In [2]:
def integrand(x, a):
return 1.0/(x**2 + a**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi/a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [3]:
assert True # leave this cell to grade the above integral
Here is the integral I am performing:
$$ I_1 = \int_0^\infty \frac{1-cos(ax)}{x^2}dx=\frac{\pi a}{2} $$
In [13]:
def integrand(x, a):
return (1-np.cos(a*x))/x**2
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.pi*a
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [5]:
assert True # leave this cell to grade the above integral
Here is the integral I am performing:
$$ I_2 = \int_0^a \sqrt{a^2-x^2}dx=\frac{\pi a^2}{4} $$
In [6]:
def integrand(x, a):
return np.sqrt(a**2 - x**2)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, a, args=(a,))
return I
def integral_exact(a):
return 0.25*np.pi*(a**2)
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [7]:
assert True # leave this cell to grade the above integral
Here is the integral I am performing:
$$ I_3 = \int_0^\infty e^{-ax^2}dx=\frac{1}{2}\sqrt{\frac{\pi}{a}} $$
In [8]:
def integrand(x, a):
return np.exp(-a*(x**2))
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return 0.5*np.sqrt(np.pi/a)
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [9]:
assert True # leave this cell to grade the above integral
Here is the integral I am performing:
$$ I_4 = \int_0^\infty \frac{x}{e^x+1}dx=\frac{\pi^2}{12} $$
In [10]:
def integrand(x, a):
return x/(np.exp(x)+1)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, np.inf, args=(a,))
return I
def integral_exact(a):
return (np.pi**2)/12
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [11]:
assert True # leave this cell to grade the above integral
Here is the integral I am performing:
$$ I_5 = \int_0^1 \frac{ln(1+x)}{x}dx=\frac{\pi^2}{12} $$
In [12]:
def integrand(x, a):
return np.log(1+x)/(x)
def integral_approx(a):
# Use the args keyword argument to feed extra arguments to your integrand
I, e = integrate.quad(integrand, 0, 1, args=(a,))
return I
def integral_exact(a):
return (np.pi**2)/12
print("Numerical: ", integral_approx(1.0))
print("Exact : ", integral_exact(1.0))
In [ ]:
assert True # leave this cell to grade the above integral