In [1]:
%pylab inline
A synchronous machine has a synchronous reactance of $1.0\,\Omega$ per phase and an armature resistance of $0.1\,\Omega$ per phase.
In [2]:
Ea = 460 # [V]
EA_angle = -10/180*pi # [rad]
EA = Ea * (cos(EA_angle) + 1j*sin(EA_angle))
Vphi = 480 # [V]
VPhi_angle = 0/180*pi # [rad]
VPhi = Vphi*exp(1j*VPhi_angle)
Ra = 0.1 # [Ohm]
Xs = 1.0 # [Ohm]
This machine is a motor, consuming power from the power system, because $\vec{E}_A$ is lagging $\vec{V}_\phi$
It is also consuming reactive power, because $E_A \cos{\delta} < V_\phi$ . The current flowing in this machine is:
$$\vec{I}_A = \frac{\vec{V}_\phi - \vec{E}_A}{R_A + jX_s}$$
In [3]:
IA = (VPhi - EA) / (Ra + Xs*1j)
IA_angle = arctan(IA.imag/IA.real)
print('IA = {:.1f} A ∠ {:.2f}°'.format(abs(IA), IA_angle/pi*180))
Therefore the real power consumed by this motor is:
$$P =3V_\phi I_A \cos{\theta}$$
In [4]:
theta = abs(IA_angle)
P = 3* abs(VPhi)* abs(IA)* cos(theta)
print('''
P = {:.1f} kW
============'''.format(P/1e3))
and the reactive power consumed by this motor is:
$$Q = 3V_\phi I_A \sin{\theta}$$
In [5]:
Q = 3* abs(VPhi)* abs(IA)* sin(theta)
print('''
Q = {:.1f} kvar
============='''.format(Q/1e3))