In [1]:
%pylab inline
%precision %.4g
Out[1]:
Figure P1-14 shows a simple single-phase ac power system with three loads. The voltage source is $\vec{V} = 240\,V\angle 0^\circ$, impedances of these three loads are:
$$\vec{Z}_1 = 10\,\Omega\angle 30^\circ \quad \vec{Z}_2 = 10\,\Omega\angle 45^\circ \quad \vec{Z}_3 = 10\,\Omega\angle -90^\circ $$
In [2]:
V = 240 # [V]
Z1 = 10.0 * exp(1j* 30/180*pi)
Z2 = 10.0 * exp(1j* 45/180*pi)
Z3 = 10.0 * exp(1j*-90/180*pi)
Answer the following questions about this power system.
In [3]:
I1 = V/Z1
I2 = V/Z2
I1_angle = arctan(I1.imag/I1.real)
I2_angle = arctan(I2.imag/I2.real)
print('''I1 = {:.1f} A ∠{:.1f}°
I2 = {:.1f} A ∠{:.1f}°'''.format(
abs(I1), I1_angle/pi*180,
abs(I2), I2_angle/pi*180))
Therefore the total current from the source is $\vec{I} = \vec{I}_1 + \vec{I}_2$:
In [4]:
I = I1 + I2
I_angle = arctan(I.imag/I.real)
print('I = {:.1f} A ∠{:.1f}°'.format(
abs(I), I_angle/pi*180))
print('==================')
The power factor supplied by the source is:
In [5]:
PF = cos(-I_angle)
PF
Out[5]:
lagging (because current laggs behind voltage).
Note that the angle $\theta$ used in the power factor and power calculations is the impedance angle, which is the negative of the current angle as long as voltage is at $0^\circ$.
The real, reactive, and apparent power supplied by the source are
$$S = VI^* \quad P = VI\cos\theta = real(S) \quad Q = VI\sin\theta = imag(S)$$
In [6]:
So = V*conj(I) # I use index "o" for open switch
So
Out[6]:
Let's pretty-print that:
In [7]:
print('''
So = {:>7.1f} VA
Po = {:>7.1f} W
Qo = {:>7.1f} var
================'''.format(abs(So), So.real, So.imag))
In [8]:
S1o = V*conj(I1)
S1o
Out[8]:
In [9]:
S2o = V*conj(I2)
S2o
Out[9]:
Let's pretty-print that:
In [10]:
print('''
S1o = {:>6.1f} VA
P1o = {:>6.1f} W
Q1o = {:>6.1f} var
----------------
S2o = {:>6.1f} VA
P2o = {:>6.1f} W
Q2o = {:>6.1f} var
================'''.format(abs(S1o), S1o.real, S1o.imag,
abs(S2o), S2o.real, S2o.imag))
As expected, the real and reactive power supplied by the source are equal to the sum of the real and reactive powers consumed by the loads.
In [11]:
I3 = V/Z3
I3_angle = arctan(I3.imag/I3.real)
print('I3 = {:.1f} A ∠{:.1f}°'.format(abs(I3), I3_angle/pi*180))
Therefore the total current from the source is $\vec{I} = \vec{I}_1 + \vec{I}_2 + \vec{I}_3$:
In [12]:
I = I1 + I2 + I3
I_angle = arctan(I.imag/I.real)
print('I = {:.1f} A ∠{:.1f}°'.format(abs(I), I_angle/pi*180))
print('=================')
The power factor supplied by the source is:
In [13]:
PF = cos(-I_angle)
PF
Out[13]:
lagging (because current laggs behind voltage).
The real, reactive, and apparent power supplied by the source are
$$S = VI^* \quad P = VI\cos\theta = real(S) \quad Q = VI\sin\theta = imag(S)$$
In [14]:
Sc = V*conj(I) # I use index "c" for closed switch
Sc
Out[14]:
Let's pretty-print that:
In [15]:
print('''
Sc = {:.1f} VA
Pc = {:.1f} W
Qc = {:.1f} var
==============='''.format(abs(Sc), Sc.real, Sc.imag))
In [16]:
S1c = V*conj(I1)
S1c
Out[16]:
In [17]:
S2c = V*conj(I2)
S2c
Out[17]:
In [18]:
S3c = V*conj(I3)
S3c
Out[18]:
In [19]:
print('''
S1c = {:>7.1f} VA
P1c = {:>7.1f} W
Q1c = {:>7.1f} var
-----------------
S2c = {:>7.1f} VA
P2c = {:>7.1f} W
Q2c = {:>7.1f} var
-----------------
S3c = {:>7.1f} VA
P3c = {:>7.1f} W
Q3c = {:>7.1f} var
================='''.format(abs(S1c), S1c.real, S1c.imag,
abs(S2c), S2c.real, S2c.imag,
abs(S3c), S3c.real, S3c.imag))