3 points
$$\int_2^\infty e^{-3x} dx$$$$= \lim_{t\to \infty} \int_2^t e^{-3x} dx$$$$= \lim_{t\to \infty} \left[ \frac{e^{-3x}}{-3} \right]_{2}^{t}$$$$= -\frac{1}{3} \lim_{t\to \infty} \left( e^{-3t} - e^{-6} \right)$$$$= -\frac{1}{3} \left( 0 - \frac{1}{e^6} \right)$$$$\text{Solution }= \frac{1}{3e^6}$$Converges
In [3]:
%matplotlib inline
import numpy as np
import sympy as sp
from matplotlib import pyplot as plt
# f(x) = 1/x --> Diverges
f = lambda x: 3/(x**5)
sp.mpmath.plot([f], xlim=[0,5], ylim=[0,5], points=500)
In [ ]: