Wir definieren die Hilbert-Schmidt Norm einer Matrix $A \in K^{n \times n}$ als $$ |A| = \left( \frac{1}{n}\sum_{i = 0}^{n-1}\sum_{i = 0}^{n-1} |a_{i,j}|^2 \right)^{1/2}.$$ Zeigen Sie
Überlegen Sie sich, warum diese Norm auch schwache Norm genannt wird.
Seien $\{A_n\}$ und $\{B_n\}$ Folgen von $n\times n$ Matrizen, welche beschränkt bzgl. der starken Norm sind: $$ \|A_n\|,\|B_n\| \leq M < \infty, n=1,2,\ldots $$ und bzgl. der schwachen Norm konvergieren $$\lim_{n \to \infty} |A_n -B_n| = 0.$$ Wir nennen diese Folgen asymptotisch äquivalent und notieren dies als $A_n \sim B_n$. Zeigen Sie nun für $\{A_n\}$ , $\{B_n\}$ und $\{C_n\}$, welche jeweils die Eigenwerte $\{\alpha_{n,i}\}$,$\{\beta_{n,i}\}$ und $\{\zeta_{n,i}\}$ haben, folgende Zusammenhänge.
Tipp: Nutzen Sie ohne Beweis, dass gilt $|GH|\leq \|G\| \cdot |H|$. Wer Lust hat, kann es aber auch gerne beweisen.