In [1]:
%pylab inline
A 100-MVA 230/115-kV $\Delta$-Y three-phase power transformer has a per-unit resistance of 0.015 pu and a per-unit reactance of 0.06 pu. The excitation branch elements are $R_C =100\,pu$ and $X_M = 20\,pu$.
In [2]:
Sbase = 100e6 # [VA]
Vp0 = 230e3 # [V]
Vs0 = 115e3 # [V]
Rc_pu = 100.0
Xm_pu = 20.0
Req_pu = 0.015
Xeq_pu = 0.06
If this transformer supplies a load of 80 MVA at 0.8 PF lagging.
In [3]:
Pload = 80e6 # [VA]
PF = 0.8
Vls_a = Vs0
Ils_a = Pload / (sqrt(3)*Vls_a)
print('Ils_a = {:.0f} A'.format(Ils_a))
The base apparent power is $S_\text{base} = 100\,MVA$ , and the base line voltage on the secondary side is $V_{LS_\text{base}} = 115\,kV$ , so the base value of the secondary line current is:
$$I_{LS_\text{base}} = \frac{S_\text{base}}{\sqrt{3}V_{LS_\text{base}}}$$
In [4]:
Vls_base = Vs0
Ils_base_a = Sbase / (sqrt(3)*Vls_base)
print('Ils_base_a = {:.0f} A'.format(Ils_base_a))
so the per-unit secondary current is:
$$\vec{I}_{LS_{pu}} = \frac{I_{LS}}{I_{LS_\text{base}}}$$
In [5]:
Ils_pu_a = Ils_a / Ils_base_a
ILS_pu_a_angle = -arccos(PF)
ILS_pu_a = Ils_pu_a * (cos(ILS_pu_a_angle) + sin(ILS_pu_a_angle)*1j)
print('ILS_pu_a = {:.1f} ∠{:.2f}°'.format(
abs(ILS_pu_a), ILS_pu_a_angle/pi*180))
The per-unit phasor diagram is shown below:
In [6]:
VS_pu = 1.0
Zeq_pu = Req_pu + Xeq_pu*1j
VP_pu = VS_pu + ILS_pu_a*Zeq_pu
VP_pu_angle = arctan(VP_pu.imag/VP_pu.real)
print('VS_pu = {:.3f} ∠{:.1f}°'.format(
abs(VP_pu), VP_pu_angle/pi*180))
and the voltage regulation is:
$$VR = \frac{V_P - V_S}{V_S} \cdot 100\%$$
In [7]:
VR = (abs(VP_pu) - abs(VS_pu)) / abs(VS_pu) * 100
print('''
VR = {:.1f}%
=========
'''.format(VR))
In [8]:
Vphis_base = Vls_base / sqrt(3)
print('Vphi_base = {:.1f} kV'.format(Vphis_base/1000))
The base impedance of the transformer referred to the low-voltage side is:
$$Z_\text{base} = \frac{3V_{\phi S_\text{base}}^2}{S_\text{base}}$$
In [9]:
Zbase = 3 * Vphis_base**2 / Sbase
print('Zbase = {:.0f} Ω'.format(Zbase))
Each per-unit impedance is converted to actual ohms referred to the low-voltage side by multiplying it by this base impedance.
The resulting equivalent circuit is shown below:
In [10]:
Req = Req_pu*Zbase
Xeq = Xeq_pu*Zbase
Rc = Rc_pu*Zbase
Xm = Xm_pu*Zbase
print('''
Req,s = {:.2f} Ω Xeq,s = {:.2f} Ω
Rc,s = {:.1f} kΩ Xm,s = {:.2f} kΩ
==================================
'''.format(Req, Xeq, Rc/1000, Xm/1000))
In [11]:
Peq_pu = abs(ILS_pu_a)**2 *Req_pu
print('Peq_pu = {:.4f}'.format(Peq_pu))
and the actual losses in the series resistance are:
$$P_\text{EQ} = S_\text{base}P_{\text{EQ}_\text{pu}}$$
In [12]:
Peq = Sbase * Peq_pu
print('''
Peq = {:.2f} MW
=============
'''.format(Peq/1e6))
The per-unit losses in the excitation branch are: $$P_{\text{EX}_\text{pu}} = \frac{V^2}{R_\text{EX}}$$
In [13]:
Rex_pu = Rc_pu
Pex_pu = abs(VP_pu)**2 / Rex_pu
print('Pex_pu = {:.4f}'.format(Pex_pu))
and the actual losses in the excitation branch are: $$P_{EX} = S_{base}P_{EX,pu}$$
In [14]:
Pex = Sbase*Pex_pu
print('''
Pex = {:.2f} MW
=============
'''.format(Pex/1e6))
The per-unit power supplied to the load: $$P_{\text{load}_\text{pu}} = \frac{P_\text{load}}{S_\text{base}}$$
In [15]:
Pload_pu = Pload/Sbase
print('Pload_pu = {:.2f}'.format(Pload_pu))
Therefore, the transformer’s efficiency is: $$\eta = \frac{P_{OUT}}{P_{IN}} \cdot 100\%$$
In [16]:
Pin_pu= Pload_pu + Peq_pu + Pex_pu
Pout_pu = Pload_pu
eta = Pout_pu/Pin_pu * 100
print('''
η = {:.1f} %
==========
'''.format(eta))