Excercises Electric Machinery Fundamentals

Chapter 2

Problem 2-11


In [1]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

Description

A 100-MVA 230/115-kV $\Delta$-Y three-phase power transformer has a per-unit resistance of 0.015 pu and a per-unit reactance of 0.06 pu. The excitation branch elements are $R_C =100\,pu$ and $X_M = 20\,pu$.


In [2]:
Sbase = 100e6 # [VA]
Vp0   = 230e3 # [V]
Vs0   = 115e3 # [V]

Rc_pu  = 100.0
Xm_pu  =  20.0
Req_pu =   0.015
Xeq_pu =   0.06

(a)

If this transformer supplies a load of 80 MVA at 0.8 PF lagging.

  • draw the phasor diagram of one phase of the transformer.

(b)

  • What is the voltage regulation of the transformer bank under these conditions?

(c)

  • Sketch the equivalent circuit referred to the low-voltage side of one phase of this transformer.
  • Calculate all the transformer impedances referred to the low-voltage side.

(d)

  • Determine the losses in the transformer and the efficiency of the transformer under the conditions of part (b).

SOLUTION

(a)

The transformer supplies a load of 80 MVA at 0.8 PF lagging. Therefore, the secondary line current of the transformer is: $$I_{LS} = \frac{S}{\sqrt{3}V_{LS}}$$


In [3]:
Pload = 80e6  # [VA]
PF    = 0.8
Vls_a = Vs0

Ils_a = Pload / (sqrt(3)*Vls_a)
print('Ils_a = {:.0f} A'.format(Ils_a))


Ils_a = 402 A

The base apparent power is $S_\text{base} = 100\,MVA$ , and the base line voltage on the secondary side is $V_{LS_\text{base}} = 115\,kV$ , so the base value of the secondary line current is:

$$I_{LS_\text{base}} = \frac{S_\text{base}}{\sqrt{3}V_{LS_\text{base}}}$$

In [4]:
Vls_base = Vs0

Ils_base_a = Sbase / (sqrt(3)*Vls_base)
print('Ils_base_a = {:.0f} A'.format(Ils_base_a))


Ils_base_a = 502 A

so the per-unit secondary current is:

$$\vec{I}_{LS_{pu}} = \frac{I_{LS}}{I_{LS_\text{base}}}$$

In [5]:
Ils_pu_a = Ils_a / Ils_base_a
ILS_pu_a_angle = -arccos(PF)
ILS_pu_a = Ils_pu_a * (cos(ILS_pu_a_angle) + sin(ILS_pu_a_angle)*1j)

print('ILS_pu_a = {:.1f}{:.2f}°'.format(
            abs(ILS_pu_a), ILS_pu_a_angle/pi*180))


ILS_pu_a = 0.8 ∠-36.87°

The per-unit phasor diagram is shown below:

(b)

The per-unit primary voltage of this transformer is: $$\vec{V}_P = \vec{V}_S + \vec{I}Z_\text{EQ}$$


In [6]:
VS_pu = 1.0                                    
Zeq_pu = Req_pu + Xeq_pu*1j      

VP_pu = VS_pu + ILS_pu_a*Zeq_pu
VP_pu_angle = arctan(VP_pu.imag/VP_pu.real)
print('VS_pu = {:.3f}{:.1f}°'.format(
           abs(VP_pu), VP_pu_angle/pi*180))


VS_pu = 1.039 ∠1.7°

and the voltage regulation is:

$$VR = \frac{V_P - V_S}{V_S} \cdot 100\%$$

In [7]:
VR = (abs(VP_pu) - abs(VS_pu)) / abs(VS_pu) * 100
print('''
VR = {:.1f}%
=========
'''.format(VR))


VR = 3.9%
=========

(c)

The secondary side of this transfer is Y-connected, so the base phase voltage of the low voltage (secondary) side of this transformer is: $$V_{\phi S_\text{base}} = \frac{V_{LS_\text{base}}}{\sqrt{3}}$$


In [8]:
Vphis_base = Vls_base / sqrt(3)
print('Vphi_base = {:.1f} kV'.format(Vphis_base/1000))


Vphi_base = 66.4 kV

The base impedance of the transformer referred to the low-voltage side is:

$$Z_\text{base} = \frac{3V_{\phi S_\text{base}}^2}{S_\text{base}}$$

In [9]:
Zbase = 3 * Vphis_base**2 / Sbase
print('Zbase = {:.0f} Ω'.format(Zbase))


Zbase = 132 Ω

Each per-unit impedance is converted to actual ohms referred to the low-voltage side by multiplying it by this base impedance.

The resulting equivalent circuit is shown below:


In [10]:
Req = Req_pu*Zbase
Xeq = Xeq_pu*Zbase
Rc = Rc_pu*Zbase
Xm = Xm_pu*Zbase

print('''
Req,s = {:.2f} Ω    Xeq,s = {:.2f}  Ω
Rc,s  = {:.1f} kΩ    Xm,s = {:.2f}
==================================
'''.format(Req, Xeq, Rc/1000, Xm/1000))


Req,s = 1.98 Ω    Xeq,s = 7.94  Ω
Rc,s  = 13.2 kΩ    Xm,s = 2.65 kΩ
==================================

(d)

The per-unit losses in the series resistance are: $$P_\text{EQ} = I^2R_\text{EQ}$$


In [11]:
Peq_pu = abs(ILS_pu_a)**2 *Req_pu
print('Peq_pu = {:.4f}'.format(Peq_pu))


Peq_pu = 0.0096

and the actual losses in the series resistance are:

$$P_\text{EQ} = S_\text{base}P_{\text{EQ}_\text{pu}}$$

In [12]:
Peq = Sbase * Peq_pu
print('''
Peq = {:.2f} MW
=============
'''.format(Peq/1e6))


Peq = 0.96 MW
=============

The per-unit losses in the excitation branch are: $$P_{\text{EX}_\text{pu}} = \frac{V^2}{R_\text{EX}}$$


In [13]:
Rex_pu = Rc_pu

Pex_pu = abs(VP_pu)**2 / Rex_pu
print('Pex_pu = {:.4f}'.format(Pex_pu))


Pex_pu = 0.0108

and the actual losses in the excitation branch are: $$P_{EX} = S_{base}P_{EX,pu}$$


In [14]:
Pex = Sbase*Pex_pu
print('''
Pex = {:.2f} MW
=============
'''.format(Pex/1e6))


Pex = 1.08 MW
=============

The per-unit power supplied to the load: $$P_{\text{load}_\text{pu}} = \frac{P_\text{load}}{S_\text{base}}$$


In [15]:
Pload_pu = Pload/Sbase
print('Pload_pu = {:.2f}'.format(Pload_pu))


Pload_pu = 0.80

Therefore, the transformer’s efficiency is: $$\eta = \frac{P_{OUT}}{P_{IN}} \cdot 100\%$$


In [16]:
Pin_pu= Pload_pu + Peq_pu + Pex_pu
Pout_pu = Pload_pu
eta = Pout_pu/Pin_pu * 100
print('''
η = {:.1f} %
==========
'''.format(eta))


η = 97.5 %
==========