Excercises Electric Machinery Fundamentals

Chapter 2

Problem 2-9


In [1]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

Description

A 5000-kVA 230/13.8-kV single-phase power transformer has a per-unit resistance of 1 percent and a per-unit reactance of 5 percent (data taken from the transformer’s nameplate).


In [2]:
Sbase = 5000e3  # [VA]
Vp0 = 230e3     # [V]
Vs0 = 13.8e3    # [V]
Req_pu = 0.01
Xeq_pu = 0.05

The open-circuit test performed on the low-voltage side of the transformer yielded the following data:

$$V_{OC} = 13.8kV \qquad I_{OC} = 21.1A \qquad P_{OC} = 90.8kW$$

In [3]:
Voc = 13.8e3  # [V]
Ioc = 21.1    # [A]
Poc = 90.8e3  # [W]

(a)

  • Find the equivalent circuit referred to the low-voltage side of this transformer.

(b)

If the voltage on the secondary side is 13.8 kV and the power supplied is 4000 kW at 0.8 PF lagging.

  • Find the voltage regulation of the transformer.
  • Find its efficiency.

SOLUTION

(a)

The open-circuit test was performed on the low-voltage side of the transformer, so it can be used to directly find the components of the excitation branch relative to the low-voltage side.

$$|Y_{EX}| = |G_{C} - jB_{M}| = \frac{I_{OC}}{V_{OC}}$$

In [4]:
yex = Ioc / Voc
print('yex = {:.6f}'.format(yex))


yex = 0.001529

$\theta = \arccos\frac{P_{OC}}{V_{OC}I_{OC}}$


In [5]:
theta = arccos(Poc/(Voc*Ioc))
print('theta = {:.2f}°'.format(theta/pi*180))  # print the angle in degrees


theta = 71.83°

In [6]:
Yex = yex * (cos(theta) - sin(theta)*1j)
print('Yex = {:.7f} S'.format(Yex))


Yex = 0.0004768-0.0014527j S
$$Y_{EX} = G_C - jB_M$$

In [7]:
Gc = Yex.real
Bm = -Yex.imag
Rc = 1/Gc
Xm = 1/Bm
print('Rc = {:4.0f} Ω'.format(Rc))
print('Xm = {:4.0f} Ω'.format(Xm))


Rc = 2097 Ω
Xm =  688 Ω

The base impedance of this transformer referred to the secondary side is:

$$Z_\text{base} = \frac{V^2_\text{base}}{S_\text{base}}$$

In [8]:
Vbase = Vs0
Zbase = Vbase**2 / Sbase
print('Zbase = {:.2f} Ω'.format(Zbase))


Zbase = 38.09 Ω

Thus:


In [9]:
Req = Req_pu * Zbase
Xeq = Xeq_pu * Zbase
print('Req = {:4.2f} Ω'.format(Req))
print('Xeq = {:4.2f} Ω'.format(Xeq))


Req = 0.38 Ω
Xeq = 1.90 Ω

The resulting equivalent circuit is shown below:


In [10]:
print('''
Req,s = {:.2f} Ω   Xeq,s = {:.1f} Ω 
Rc,s  = {:.0f} Ω    Xm,s = {:.0f} Ω 
==============================
'''.format(Req, Xeq, Rc, Xm))


Req,s = 0.38 Ω   Xeq,s = 1.9 Ω 
Rc,s  = 2097 Ω    Xm,s = 688 Ω 
==============================

(b)

If the load on the secondary side of the transformer is 4000 kW at 0.8 PF lagging and the secondary voltage is 13.8 kV, the secondary current is: $$I_S = \frac{P_{LOAD}}{V_SPF}$$


In [11]:
Pload_b = 4000e3 # [W]
VS_b    = 13.8e3 # [V]
PF      = 0.8

Is_b = Pload_b / (abs(VS_b) * PF)
print('Is_b = {:.1f} A'.format(Is_b))


Is_b = 362.3 A

In [12]:
Is_b_angle = -arccos(PF)    # [rad]
IS_b = Is_b * (cos(Is_b_angle) + sin(Is_b_angle)*1j)
print('IS_b = {:.1f} A ∠{:.2f}°'.format(
            abs(IS_b), Is_b_angle/pi*180))


IS_b = 362.3 A ∠-36.87°

The voltage on the primary side of the transformer (referred to the secondary side) is: $$\vec{V}'_P = \vec{V}_S + \vec{I}_SZ_{EQ}$$


In [13]:
Zeq = Req + Xeq*1j
V_P = VS_b + IS_b*Zeq
V_P_angle = arctan(V_P.imag/V_P.real)
print('V_P = {:.0f} V ∠{:.1f}°'.format(
            abs(V_P), V_P_angle/pi*180))


V_P = 14332 V ∠1.9°

There is a voltage drop under these load conditions.

Therefore the voltage regulation of the transformer is:

$$VR = \frac{V'_P-V_S}{V_S} \cdot 100\%$$

In [14]:
VR = (abs(V_P)-abs(VS_b)) / abs(VS_b) *100
print('VR = {:.2f} %'.format(VR))
print('===========')


VR = 3.86 %
===========

The transformer copper losses and core losses are:

$$P_{CU} = I^2_S R_{EQ,S}$$$$P_{core} = \frac{(V'_P)^2}{R_C}$$

In [15]:
Pcu = abs(IS_b)**2 * Req
Pcore = abs(V_P)**2 / Rc
print('Pcu   = {:.1f} kW'.format(Pcu/1000))
print('Pcore = {:.1f} kW'.format(Pcore/1000))


Pcu   = 50.0 kW
Pcore = 97.9 kW

Therefore the efficiency of this transformer at these conditions is:

$$\eta = \frac{P_{OUT}}{P_{OUT}+P_{CU}+P_{core}} \cdot 100\%$$

In [16]:
Pout = Pload_b
eta = Pout / (Pout + Pcu +Pcore) * 100
print('η = {:.1f} %'.format(eta))
print('==========')


η = 96.4 %
==========