In [1]:
%pylab inline
A 5000-kVA 230/13.8-kV single-phase power transformer has a per-unit resistance of 1 percent and a per-unit reactance of 5 percent (data taken from the transformer’s nameplate).
In [2]:
Sbase = 5000e3 # [VA]
Vp0 = 230e3 # [V]
Vs0 = 13.8e3 # [V]
Req_pu = 0.01
Xeq_pu = 0.05
The open-circuit test performed on the low-voltage side of the transformer yielded the following data:
$$V_{OC} = 13.8kV \qquad I_{OC} = 21.1A \qquad P_{OC} = 90.8kW$$
In [3]:
Voc = 13.8e3 # [V]
Ioc = 21.1 # [A]
Poc = 90.8e3 # [W]
In [4]:
yex = Ioc / Voc
print('yex = {:.6f}'.format(yex))
$\theta = \arccos\frac{P_{OC}}{V_{OC}I_{OC}}$
In [5]:
theta = arccos(Poc/(Voc*Ioc))
print('theta = {:.2f}°'.format(theta/pi*180)) # print the angle in degrees
In [6]:
Yex = yex * (cos(theta) - sin(theta)*1j)
print('Yex = {:.7f} S'.format(Yex))
In [7]:
Gc = Yex.real
Bm = -Yex.imag
Rc = 1/Gc
Xm = 1/Bm
print('Rc = {:4.0f} Ω'.format(Rc))
print('Xm = {:4.0f} Ω'.format(Xm))
The base impedance of this transformer referred to the secondary side is:
$$Z_\text{base} = \frac{V^2_\text{base}}{S_\text{base}}$$
In [8]:
Vbase = Vs0
Zbase = Vbase**2 / Sbase
print('Zbase = {:.2f} Ω'.format(Zbase))
Thus:
In [9]:
Req = Req_pu * Zbase
Xeq = Xeq_pu * Zbase
print('Req = {:4.2f} Ω'.format(Req))
print('Xeq = {:4.2f} Ω'.format(Xeq))
The resulting equivalent circuit is shown below:
In [10]:
print('''
Req,s = {:.2f} Ω Xeq,s = {:.1f} Ω
Rc,s = {:.0f} Ω Xm,s = {:.0f} Ω
==============================
'''.format(Req, Xeq, Rc, Xm))
In [11]:
Pload_b = 4000e3 # [W]
VS_b = 13.8e3 # [V]
PF = 0.8
Is_b = Pload_b / (abs(VS_b) * PF)
print('Is_b = {:.1f} A'.format(Is_b))
In [12]:
Is_b_angle = -arccos(PF) # [rad]
IS_b = Is_b * (cos(Is_b_angle) + sin(Is_b_angle)*1j)
print('IS_b = {:.1f} A ∠{:.2f}°'.format(
abs(IS_b), Is_b_angle/pi*180))
The voltage on the primary side of the transformer (referred to the secondary side) is: $$\vec{V}'_P = \vec{V}_S + \vec{I}_SZ_{EQ}$$
In [13]:
Zeq = Req + Xeq*1j
V_P = VS_b + IS_b*Zeq
V_P_angle = arctan(V_P.imag/V_P.real)
print('V_P = {:.0f} V ∠{:.1f}°'.format(
abs(V_P), V_P_angle/pi*180))
There is a voltage drop under these load conditions.
Therefore the voltage regulation of the transformer is:
$$VR = \frac{V'_P-V_S}{V_S} \cdot 100\%$$
In [14]:
VR = (abs(V_P)-abs(VS_b)) / abs(VS_b) *100
print('VR = {:.2f} %'.format(VR))
print('===========')
The transformer copper losses and core losses are:
$$P_{CU} = I^2_S R_{EQ,S}$$$$P_{core} = \frac{(V'_P)^2}{R_C}$$
In [15]:
Pcu = abs(IS_b)**2 * Req
Pcore = abs(V_P)**2 / Rc
print('Pcu = {:.1f} kW'.format(Pcu/1000))
print('Pcore = {:.1f} kW'.format(Pcore/1000))
Therefore the efficiency of this transformer at these conditions is:
$$\eta = \frac{P_{OUT}}{P_{OUT}+P_{CU}+P_{core}} \cdot 100\%$$
In [16]:
Pout = Pload_b
eta = Pout / (Pout + Pcu +Pcore) * 100
print('η = {:.1f} %'.format(eta))
print('==========')