Excercises Electric Machinery Fundamentals

Chapter 2

Problem 2-2


In [1]:
%pylab inline
%precision 4


Populating the interactive namespace from numpy and matplotlib
Out[1]:
'%.4f'

Description

A single-phase power system is shown in Figure P2-1.

The power source feeds a 100-kVA 14/2.4-kV transformer through a feeder impedance of $38.2 + j140 \Omega$. The transformer’s equivalent series impedance referred to its low-voltage side is $0.10 + j0.4 \Omega$ . The load on the transformer is 90 kW at 0.8 PF lagging at $V_\text{load} = 2300\,V$.


In [2]:
Zline = 38.2  + 140.0j # [Ohm]
Zeq   =  0.10 +   0.4j # [Ohm]

V_high =  14e3 # [V]
V_low  = 2.4e3 # [V]

Pout   =  90e3 # [W] load
PF     =  0.8  # lagging

VS     = 2.3e3 # [V] secondary voltage

(a)

  • What is the voltage at the power source of the system?

(b)

  • What is the voltage regulation of the transformer?

(c)

  • How efficient is the overall power system?

SOLUTION

To solve this problem, we will refer the circuit to the secondary (low-voltage) side. The turns ratio of this transformer $a$ is:


In [3]:
a = V_high / V_low
a


Out[3]:
5.8333

The feeder’s impedance referred to the secondary side is: $$Z'_\text{line} = \left(\frac{1}{a}\right)^2Z_\text{line}$$


In [4]:
Z_line = (1/a)**2 * Zline
print('Z_line = {:.2f} Ω'.format(Z_line))


Z_line = 1.12+4.11j Ω

The secondary current $I_S$ is given by : $$I_S = \frac{P_{OUT}}{V_SPF}$$


In [5]:
Is = Pout / (VS*PF)
print('Is = {:.2f} A'.format(Is))


Is = 48.91 A

The power factor is 0.80 lagging, so the impedance angel $\theta = \arccos(PF)$ is:


In [6]:
IS_angle = - arccos(PF)  # negative because lagging PF
print('θ = {:.2f}°'.format(degrees(IS_angle)))


θ = -36.87°

The phasor current is:


In [7]:
IS = Is * (cos(IS_angle)  + sin(IS_angle)*1j)
print('IS = {:.2f} A ∠{:.2f}°'.format(abs(IS), degrees(IS_angle)))


IS = 48.91 A ∠-36.87°

(a)

The voltage at the power source of this system (referred to the secondary side) is: $$\vec{V}'_\text{source}= \vec{V}_S + \vec{I}_SZ'_\text{line} + \vec{I}_SZ_\text{EQ}$$


In [8]:
V_source = VS + IS*Z_line + IS*Zeq
V_source_angle = arctan(V_source.imag/V_source.real) # angle of V_source [rad]
print('V_source = {:.1f} V ∠{:.1f}°'.format(
        abs(V_source), degrees(V_source_angle)))


V_source = 2484.3 V ∠3.2°

Therefore, the voltage at the power source is:

$$\vec{V}_\text{source} = \vec{V}'_\text{source} \cdot a$$

In [9]:
Vsource = V_source * a                             # [V]
Vsource_angle = arctan(Vsource.imag/Vsource.real)  # angle of Vsource [rad]
print('Vsource = {:.1f} kV ∠{:.1f}°'.format(
        abs(Vsource)/1000,   # display in kV
        degrees(Vsource_angle)))


Vsource = 14.5 kV ∠3.2°

(b)

To find the voltage regulation of the transformer, we must find the voltage at the primary side of the transformer (referred to the secondary side) under these conditions:

$$\vec{V}_P' = \vec{V}_S + \vec{I}_SZ_\text{EQ}$$

In [10]:
VP = VS + IS*Zeq
VP_angle = arctan(VP.imag/VP.real)   # angle of VP [rad]
print('VP = {:.1f} V ∠{:.1f}°'.format(abs(VP), degrees(VP_angle)))


VP = 2315.7 V ∠0.3°

There is a voltage drop of 15 V under these load conditions.

Therefore the voltage regulation of the transformer is:

$$VR = \frac{V_P' - V_S}{V_S} \cdot 100\%$$

In [11]:
VR = (abs(VP)-VS) / VS * 100  # [%]
print('VR = {:.2f} %'.format(VR))


VR = 0.68 %

(c)

The overall efficiency of the power system will be the ratio of the output power to the input power. The output power supplied to the load is $P_\text{OUT} = 90\,kW$. The input power supplied by the source is: $$P_\text{IN} = P_\text{OUT} + P_\text{LOSS} = P_\text{OUT} + I^2R$$


In [12]:
R = Z_line.real + Zeq.real
Pin = Pout + abs(IS)**2 * R               # [W]
print('Pin = {:.2f} kW'.format(Pin/1000)) # [kW]


Pin = 92.93 kW

Therefore, the efficiency of the power system is:


In [13]:
eta = Pout/Pin * 100  # [%]
print('η = {:.1f} %'.format(eta))


η = 96.9 %