In [1]:
%pylab inline
%precision 4
Out[1]:
A single-phase power system is shown in Figure P2-1.
The power source feeds a 100-kVA 14/2.4-kV transformer through a feeder impedance of $38.2 + j140 \Omega$. The transformer’s equivalent series impedance referred to its low-voltage side is $0.10 + j0.4 \Omega$ . The load on the transformer is 90 kW at 0.8 PF lagging at $V_\text{load} = 2300\,V$.
In [2]:
Zline = 38.2 + 140.0j # [Ohm]
Zeq = 0.10 + 0.4j # [Ohm]
V_high = 14e3 # [V]
V_low = 2.4e3 # [V]
Pout = 90e3 # [W] load
PF = 0.8 # lagging
VS = 2.3e3 # [V] secondary voltage
To solve this problem, we will refer the circuit to the secondary (low-voltage) side. The turns ratio of this transformer $a$ is:
In [3]:
a = V_high / V_low
a
Out[3]:
The feeder’s impedance referred to the secondary side is: $$Z'_\text{line} = \left(\frac{1}{a}\right)^2Z_\text{line}$$
In [4]:
Z_line = (1/a)**2 * Zline
print('Z_line = {:.2f} Ω'.format(Z_line))
The secondary current $I_S$ is given by : $$I_S = \frac{P_{OUT}}{V_SPF}$$
In [5]:
Is = Pout / (VS*PF)
print('Is = {:.2f} A'.format(Is))
The power factor is 0.80 lagging, so the impedance angel $\theta = \arccos(PF)$ is:
In [6]:
IS_angle = - arccos(PF) # negative because lagging PF
print('θ = {:.2f}°'.format(degrees(IS_angle)))
The phasor current is:
In [7]:
IS = Is * (cos(IS_angle) + sin(IS_angle)*1j)
print('IS = {:.2f} A ∠{:.2f}°'.format(abs(IS), degrees(IS_angle)))
In [8]:
V_source = VS + IS*Z_line + IS*Zeq
V_source_angle = arctan(V_source.imag/V_source.real) # angle of V_source [rad]
print('V_source = {:.1f} V ∠{:.1f}°'.format(
abs(V_source), degrees(V_source_angle)))
Therefore, the voltage at the power source is:
$$\vec{V}_\text{source} = \vec{V}'_\text{source} \cdot a$$
In [9]:
Vsource = V_source * a # [V]
Vsource_angle = arctan(Vsource.imag/Vsource.real) # angle of Vsource [rad]
print('Vsource = {:.1f} kV ∠{:.1f}°'.format(
abs(Vsource)/1000, # display in kV
degrees(Vsource_angle)))
In [10]:
VP = VS + IS*Zeq
VP_angle = arctan(VP.imag/VP.real) # angle of VP [rad]
print('VP = {:.1f} V ∠{:.1f}°'.format(abs(VP), degrees(VP_angle)))
There is a voltage drop of 15 V under these load conditions.
Therefore the voltage regulation of the transformer is:
$$VR = \frac{V_P' - V_S}{V_S} \cdot 100\%$$
In [11]:
VR = (abs(VP)-VS) / VS * 100 # [%]
print('VR = {:.2f} %'.format(VR))
In [12]:
R = Z_line.real + Zeq.real
Pin = Pout + abs(IS)**2 * R # [W]
print('Pin = {:.2f} kW'.format(Pin/1000)) # [kW]
Therefore, the efficiency of the power system is:
In [13]:
eta = Pout/Pin * 100 # [%]
print('η = {:.1f} %'.format(eta))