In [1]:
    
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn')
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture
    
In [2]:
    
from jupyterworkflow.data import get_fremont_data
data = get_fremont_data()
pivoted = data.pivot_table('Total', index=data.index.time, columns=data.index.date)
pivoted.plot(legend=False, alpha=0.01);
    
    
In [3]:
    
X = pivoted.fillna(0).T.values
X.shape
    
    Out[3]:
In [4]:
    
X2 = PCA(2, svd_solver='full').fit_transform(X)
X2.shape
    
    Out[4]:
In [5]:
    
plt.scatter(X2[:, 0], X2[:, 1])
    
    Out[5]:
    
In [6]:
    
gmm = GaussianMixture(2)
gmm.fit(X)
labels = gmm.predict(X)
    
In [7]:
    
plt.scatter(X2[:, 0], X2[:, 1], c=labels, cmap='rainbow')
plt.colorbar();
    
    
In [8]:
    
fig, ax = plt.subplots(1, 2, figsize=(14, 6))
pivoted.T[labels == 0].T.plot(legend=False, alpha=0.1, ax=ax[0]);
pivoted.T[labels == 1].T.plot(legend=False, alpha=0.1, ax=ax[1]);
ax[0].set_title('Purple Cluster')
ax[1].set_title('Red Cluster');
    
    
In [9]:
    
dayofweek = pd.DatetimeIndex(pivoted.columns).dayofweek
plt.scatter(X2[:, 0], X2[:, 1], c=dayofweek, cmap='rainbow')
plt.colorbar();
    
    
In [10]:
    
dates = pd.DatetimeIndex(pivoted.columns)
dates[(labels==1) & (dayofweek < 5)]
    
    Out[10]: