In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use("seaborn")
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture
In [2]:
from jupyterworkflow.data import get_fremont_data
data = get_fremont_data()
In [3]:
pivoted = data.pivot_table("Total", index=data.index.time, columns=data.index.date)
pivoted.plot(legend=False, alpha=0.01)
Out[3]:
In [4]:
X = pivoted.fillna(0).T.values
X.shape
Out[4]:
In [5]:
X2 = PCA(2, svd_solver="full").fit_transform(X)
X2.shape
Out[5]:
In [6]:
plt.scatter(X2[:, 0], X2[:, 1])
Out[6]:
In [7]:
gmm = GaussianMixture(2).fit(X)
labels = gmm.predict(X)
labels
Out[7]:
In [8]:
plt.scatter(X2[:, 0], X2[:, 1], c=labels, cmap="rainbow")
plt.colorbar()
Out[8]:
In [9]:
fig, ax = plt.subplots(1, 2, figsize=(14, 6))
pivoted.T[labels == 1].T.plot(legend=False, alpha=0.1, ax=ax[1])
pivoted.T[labels == 0].T.plot(legend=False, alpha=0.1, ax=ax[0])
ax[0].set_title("Purple Cluster")
ax[0].set_title("Red Cluster")
Out[9]:
In [10]:
day_of_week = pd.DatetimeIndex(pivoted.columns).dayofweek
plt.scatter(X2[:, 0], X2[:, 1], c=day_of_week, cmap="rainbow")
plt.colorbar()
Out[10]:
In [11]:
dates = pd.DatetimeIndex(pivoted.columns)
dates[(labels == 0) & (day_of_week < 5)]
Out[11]:
What's up with Feb 6, 2017? Snow Storm
In [ ]: