Unsupervised Analysis of Days of Week

Using daily crossings to learn about relationships between various days.


In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn')

import pandas as pd
import numpy as np

from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture

Get Data


In [2]:
from jupyterworkflow.data import get_fremont_data
df = get_fremont_data()

In [3]:
pivoted = df.pivot_table('Total', index=df.index.time, columns=df.index.date)
pivoted.plot(legend=False, alpha=0.02);



In [4]:
X = pivoted.fillna(0).T.values
X.shape


Out[4]:
(1641, 24)

Unsupervised Clustering


In [5]:
X2 = PCA(2, svd_solver='full').fit_transform(X)
X2.shape


Out[5]:
(1641, 2)

In [6]:
plt.scatter(X2[:,0], X2[:,1])


Out[6]:
<matplotlib.collections.PathCollection at 0x11dbe6550>

In [7]:
gmm = GaussianMixture(2).fit(X)
labels = gmm.predict(X)

In [8]:
plt.scatter(X2[:,0], X2[:,1], c=labels, cmap='rainbow')


Out[8]:
<matplotlib.collections.PathCollection at 0x11dd3e390>

In [9]:
fig, ax = plt.subplots(1, 2, figsize=(14,6))

pivoted.T[labels==0].T.plot(legend=False, alpha=0.1, ax=ax[0])
pivoted.T[labels==1].T.plot(legend=False, alpha=0.1, ax=ax[1])

ax[0].set_title('Purple Cluster')
ax[1].set_title('Red Cluster');



In [10]:
dayofweek = pd.DatetimeIndex(pivoted.columns).dayofweek

In [11]:
plt.scatter(X2[:,0], X2[:,1], c=dayofweek, cmap='rainbow')
plt.colorbar()


Out[11]:
<matplotlib.colorbar.Colorbar at 0x118677e50>

Analyzing Outliers

The following points are weekdays with a holiday-like pattern


In [12]:
dates = pd.DatetimeIndex(pivoted.columns)

In [13]:
dates[(labels==1) & (dayofweek < 5)]


Out[13]:
DatetimeIndex(['2012-11-22', '2012-11-23', '2012-12-24', '2012-12-25',
               '2013-01-01', '2013-05-27', '2013-07-04', '2013-07-05',
               '2013-09-02', '2013-11-28', '2013-11-29', '2013-12-20',
               '2013-12-24', '2013-12-25', '2014-01-01', '2014-04-23',
               '2014-05-26', '2014-07-04', '2014-09-01', '2014-11-27',
               '2014-11-28', '2014-12-24', '2014-12-25', '2014-12-26',
               '2015-01-01', '2015-05-25', '2015-07-03', '2015-09-07',
               '2015-11-26', '2015-11-27', '2015-12-24', '2015-12-25',
               '2016-01-01', '2016-05-30', '2016-07-04', '2016-09-05',
               '2016-11-24', '2016-11-25', '2016-12-26', '2017-01-02',
               '2017-02-06'],
              dtype='datetime64[ns]', freq=None)