In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn')
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.mixture import GaussianMixture
In [2]:
from jupyterworkflow.data import get_fremont_data
data = get_fremont_data()
pivoted = data.pivot_table('Total', index = data.index.time, columns = data.index.date)
pivoted.plot(legend = False, alpha = 0.01)
Out[2]:
In [3]:
X = pivoted.fillna(0).T.values
X.shape
Out[3]:
In [4]:
X2 = PCA(2).fit_transform(X)
X2.shape
Out[4]:
In [5]:
plt.scatter(X2[:, 0], X2[:, 1])
Out[5]:
In [6]:
gmm = GaussianMixture(2).fit(X)
labels = gmm.predict(X)
labels
Out[6]:
In [7]:
plt.scatter(X2[:, 0], X2[:, 1], c = labels, cmap = 'rainbow')
plt.colorbar()
Out[7]:
In [8]:
fig, ax = plt.subplots(1, 2, figsize=(14,6))
pivoted.T[labels == 0].T.plot(legend = False, alpha = 0.01, ax=ax[0])
pivoted.T[labels == 1].T.plot(legend = False, alpha = 0.01, ax=ax[1])
ax[0].set_title('Purple Cluster')
ax[1].set_title('Red Cluster')
Out[8]:
In [9]:
dayofweek = pd.DatetimeIndex(pivoted.columns).dayofweek
plt.scatter(X2[:, 0], X2[:, 1], c = dayofweek, cmap = 'rainbow')
plt.colorbar()
Out[9]:
In [10]:
dates = pd.DatetimeIndex(pivoted.columns)
dates[(labels == 1) & (dayofweek < 5)]
Out[10]: