n4725


NGC 4725 (UGC 7989)

Галактика найдена из пересечения HYPERLEDA и https://arxiv.org/pdf/1608.06735v1.pdf.


In [1]:
from IPython.display import HTML
from IPython.display import Image
import os

%pylab
%matplotlib inline
%run ../../../utils/load_notebook.py


Using matplotlib backend: Qt4Agg
Populating the interactive namespace from numpy and matplotlib

In [2]:
from photometry import *


importing Jupyter notebook from photometry.ipynb
Using matplotlib backend: Qt4Agg
Populating the interactive namespace from numpy and matplotlib

In [3]:
from instabilities import *


importing Jupyter notebook from instabilities.ipynb
Using matplotlib backend: Qt4Agg
Populating the interactive namespace from numpy and matplotlib

In [4]:
from utils import *


importing Jupyter notebook from utils.ipynb

In [5]:
name = 'N4725'
gtype = 'SABa' #LEDA, 'SBbc' from Heraudeau98
incl = 45.4  #LEDA
scale = 0.098 #kpc/arcsec according to NED

data_path = '../../../data/n4725_u7989'
sin_i, cos_i = np.sin(incl*np.pi/180.), np.cos(incl*np.pi/180.)

In [6]:
%%javascript 
$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.js')


Оглавление

Статьи

TODO: add arcticles

Разное


In [7]:
os.chdir(data_path)

# Данные из NED
HTML('<iframe src=http://ned.ipac.caltech.edu/cgi-bin/objsearch?objname=ngc+4725&extend=no&hconst=\
73&omegam=0.27&omegav=0.73&corr_z=1&out_csys=Equatorial&out_equinox=J2000.0&obj_sort=RA+or+Longitude&of=pre_text&zv_breaker=\
30000.0&list_limit=5&img_stamp=YES width=1000 height=350></iframe>')


Out[7]:

In [8]:
# Данные из HYPERLEDA
HTML('<iframe src=http://leda.univ-lyon1.fr/ledacat.cgi?o=ngc4725 width=1000 height=350></iframe>')


Out[8]:

In [9]:
#SDSS
Image('n4725_SDSS.jpg', width=500)


Out[9]:

Проблема в том, что эта галактика есть в DR7, но в более поздних релихах я не смог ее найти, соответственно не знаю масштаба корректного.

Однако я понял, что сама картинка из выборки http://cosmo.nyu.edu/hogg/rc3/ и там есть с маштабом изображение:


In [10]:
Image('n4725_SDSS_labeled.jpg', width=500)


Out[10]:

In [11]:
#JHK
Image('n4725_2MASS.jpg', width=300)


Out[11]:

In [12]:
Image('noord_p113_cite.png')


Out[12]:

Кинематические данные по звездам

Дисперсии скоростей и кривая вращения - есть в Heraudeau 1999 http://adsabs.harvard.edu/cgi-bin/bib_query?1999A%26AS..136..509H до ~50'' (1 разрез), PA=$35^{\circ}$

TODO: понять, исправлено ли за наклон

Кривая вращения


In [13]:
# Данные по звездной кинематике Heraudeau+1999 вдоль большой полуоси (не исправленные за наклон?) - из HYPERLEDA
r_ma, vel_ma, e_vel_ma, sig_ma, e_sig_ma = zip(*np.loadtxt("her99_kinem.dat", float))

fig = plt.figure(figsize=[8,5])
plt.errorbar(r_ma, vel_ma, e_vel_ma, fmt='.', marker='.', mew=0, label="Heraudeau 1998 stars maj")
plt.legend()
plt.ylim(-350., 350.)
plt.show()



In [14]:
Image('her99_rot.png') #оригинал


Out[14]:

Приближение:


In [15]:
r_ma_b, vel_ma_b, e_vel_b = zip(*sorted(zip(np.abs(r_ma), np.abs(vel_ma), e_vel_ma)))

In [16]:
fig = plt.figure(figsize=[8,4])
plt.errorbar(r_ma_b, vel_ma_b, yerr=e_vel_b, fmt='.', marker='.', mew=0, color='blue', label = 'Her98 star maj')

test_points = np.linspace(0.0, max(r_ma_b), 100)

poly_star = poly1d(polyfit(r_ma_b, vel_ma_b, deg=7))
plt.plot(test_points, poly_star(test_points), '-', label='poly deg=7')

def w(arr):
    return map(lambda l: 1/(1. + l**2), arr)

import scipy.interpolate as inter

spl = inter.UnivariateSpline(r_ma_b, vel_ma_b, k=3, s=10000., w=w(e_vel_b))
plt.plot(test_points, spl(test_points), '-', label='spl s=10000 w^2')

spl = inter.UnivariateSpline(r_ma_b, vel_ma_b, k=3, s=10000.)
plt.plot(test_points, spl(test_points), '-', label='spl s=10000')

plt.legend(loc='upper left')
plt.ylim(0, 170)
plt.show()


C весами плохо получается, полином и обычный почти совпадают - берем их:


In [17]:
star_approx = spl

Дисперсии


In [18]:
r_sig_ma = r_ma #Heraudeau+1999

fig = plt.figure(figsize=[6., 4.])
plt.errorbar(r_sig_ma, sig_ma, yerr=e_sig_ma, fmt='.', marker='.', mew=0, color='blue', label=r'$maj\, Heraudeau $')

plt.xlabel('$R$')
plt.ylabel('$\sigma$')
plt.ylim(0, 350)
plt.legend();



In [19]:
Image('her99_disp.png') #из статьи


Out[19]:

In [20]:
fig = plt.figure(figsize=[6., 4.])
plt.errorbar(map(abs, r_sig_ma), sig_ma, yerr=e_sig_ma, fmt='.', marker='.', mew=0, color='blue', label=r'$maj\, Heraudeau $')
plt.xlabel('$R$')
plt.ylabel('$\sigma$')
plt.ylim(0, 250)
plt.legend();


Для большой оси: $\sigma^2_{maj} = \sigma^2_{\varphi}\sin^2 i + \sigma^2_{z}\cos^2 i$, следовательно примерные ограничения $$\sigma_{maj} < \frac{\sigma_{maj}}{\sqrt{\sin^2 i + 0.49\cos^2 i}}< \sigma_R = \frac{\sigma_{maj}}{\sqrt{f\sin^2 i + \alpha^2\cos^2 i}} ~< \frac{\sigma_{maj}}{\sqrt{0.5\sin^2 i + 0.09\cos^2 i}} < \frac{\sqrt{2}\sigma_{maj}}{\sin i} (или \frac{\sigma_{maj}}{\sqrt{f}\sin i}),$$ или можно более точную оценку дать, если построить $f$ (сейчас $0.5 < f < 1$).

Для малой оси: $\sigma^2_{min} = \sigma^2_{R}\sin^2 i + \sigma^2_{z}\cos^2 i$ и ограничения $$\sigma_{min} < \frac{\sigma_{min}}{\sqrt{\sin^2 i + 0.49\cos^2 i}} < \sigma_R = \frac{\sigma_{min}}{\sqrt{\sin^2 i + \alpha^2\cos^2 i}} ~< \frac{\sigma_{min}}{\sqrt{\sin^2 i + 0.09\cos^2 i}} < \frac{\sigma_{min}}{\sin i}$$

Соответственно имеем 5 оценок из maj и 4 оценки из min.

У нас только большая ось - все оценки из нее:


In [21]:
spl_maj = inter.UnivariateSpline(r_sig_ma, sig_ma, k=3, s=10000.)
sig_maj_lim = max(r_sig_ma)

points = np.linspace(0.1, max(r_ma)+15., 100)

In [22]:
# TODO: move to external file

def flat_end(argument):
    '''декоратор для того, чтобы продолжать функцию на уровне последнего значения'''
    def real_decorator(function):
        def wrapper(*args, **kwargs):
            if args[0] < argument:
                return function(*args, **kwargs)
            else:
                return function(argument, *args[1:], **kwargs)
        return wrapper
    return real_decorator

@flat_end(sig_maj_lim)
def sig_R_maj_minmin(r, spl_maj=spl_maj):
    return spl_maj(r).item()

@flat_end(sig_maj_lim)
def sig_R_maj_min(r, spl_maj=spl_maj):
    return spl_maj(r).item()/sqrt(sin_i**2 + 0.49*cos_i**2)
    
@flat_end(sig_maj_lim)
def sig_R_maj_max(r, spl_maj=spl_maj):
    return spl_maj(r).item()/sqrt(0.5*sin_i**2 + 0.09*cos_i**2)

@flat_end(sig_maj_lim)
def sig_R_maj_maxmax(r, spl_maj=spl_maj):
    return spl_maj(r)*sqrt(2)/sin_i
    
@flat_end(sig_maj_lim)
def sig_R_maj_maxmaxtrue(r, spl_maj=spl_maj):
    return spl_maj(r)/sin_i/sqrt(sigPhi_to_sigR_real(r))

Используем соотношение $\sigma_{\varphi}^{2}/\sigma_{R}^{2}$, которое описывается уравнением ${\displaystyle \sigma_{\varphi}^{2}/\sigma_{R}^{2}=0.5\left(1+\frac{R}{\bar{v}_{\varphi}}\frac{d\bar{v}_{\varphi}}{dR}\right)}$ (Binney & Tremaine, 1987)


In [23]:
def sigPhi_to_sigR_real(R):
        return 0.5 * (1 + R*star_approx.derivative()(R) / star_approx(R))

plt.plot(test_points, [sigPhi_to_sigR_real(R) for R in test_points], 'd-', color='green')
plt.axhline(y=0.5)
plt.axhline(y=0.0)
plt.xlabel('$R$')
plt.ylabel(r"$\sigma_{\varphi}^2/\sigma_{R}^2$")
plt.ylim(0);