we are going to use a LIBRARY called numpy
In [1]:
    
import numpy
    
In [2]:
    
numpy.loadtxt(fname='data/weather-01.csv', delimiter = ',')
    
    Out[2]:
Variables
In [5]:
    
Weight_kg = 55
    
In [8]:
    
print (Weight_kg)
    
    
In [9]:
    
print('Weight in pounds:', Weight_kg * 2.2)
    
    
In [10]:
    
Weight_kg = 57.5
    
In [12]:
    
print ('New weight: ', Weight_kg * 2.2)
    
    
In [13]:
    
%whos
    
    
In [14]:
    
data = numpy.loadtxt(fname='data/weather-01.csv', delimiter = ',')
    
In [15]:
    
print (data)
    
    
In [16]:
    
print (type(data))
    
    
In [17]:
    
%whos
    
    
In [18]:
    
# Finding out the data type
print (data.dtype)
    
    
In [19]:
    
# Find out the shape
print (data.shape)
    
    
In [20]:
    
# This is 60 rows * 40 columns
    
In [22]:
    
# Getting a single number out of the array
print ("First value in data: ", data [0, 0])
    
    
In [24]:
    
print ('A middle value: ', data[30, 20])
    
    
In [26]:
    
# Lets get the first 10 columns for the first 4 rows
print (data[0:4, 0:10])
# Start at index 0 and go up to BUT NOT INCLUDING index 4
    
    
In [27]:
    
# We don't need to start slicing at 0
print (data [5:10, 7:15])
    
    
In [28]:
    
# We don't even need to include the UPPER and LOWER bounds
smallchunk = data [:3, 36:]
print (smallchunk)
    
    
In [29]:
    
# Arithmetic on arrays
doublesmallchunk = smallchunk * 2.0
    
In [30]:
    
print (doublesmallchunk)
    
    
In [31]:
    
triplesmallchunk = smallchunk + doublesmallchunk
    
In [32]:
    
print (triplesmallchunk)
    
    
In [33]:
    
print (numpy.mean(data))
    
    
In [34]:
    
print (numpy.transpose(data))
    
    
In [35]:
    
print (numpy.max(data))
    
    
In [36]:
    
print (numpy.min(data))
    
    
In [39]:
    
# Get a set of data for the first station
station_0 = data [0, :]
    
In [40]:
    
print (numpy.max(station_0))
    
    
In [41]:
    
# We don't need to create 'temporary' array slices
# We can refer to what we call array axes
    
In [47]:
    
# axis = 0 gets the mean DOWN each column, so the mean temperature for each recording period
print (numpy.mean(data, axis = 0))
    
    
In [48]:
    
# axis = 1 gets the mean ACROSS each row, so the mean temperature for each recording period
print (numpy.mean(data, axis = 1))
    
    
In [49]:
    
# do some simple visualisations
    
In [50]:
    
import matplotlib.pyplot
    
    
In [51]:
    
%matplotlib inline
    
In [52]:
    
image = matplotlib.pyplot.imshow(data)
    
    
In [53]:
    
# Let's look at the average temprature over time
avg_temperature = numpy.mean(data, axis = 0)
    
In [54]:
    
avg_plot = matplotlib.pyplot.plot(avg_temperature)
    
    
Tasks
In [59]:
    
max_temprature = numpy.max(data, axis = 0)
min_temprature = numpy.min(data, axis = 0)
max_plot = matplotlib.pyplot.plot(max_temprature)
min_plot = matplotlib.pyplot.plot(min_temprature)
    
    
In [58]:
    
min_p = numpy.min(data, axis = 0)
min_plot = matplotlib.pyplot.plot(min_p)
    
    
In [ ]: