We are going to use numpy
In [2]:
    
import numpy
    
In [3]:
    
numpy.loadtxt(fname='data/weather-01.csv', delimiter = ',')
    
    Out[3]:
In [4]:
    
weight_kg = 55
    
In [5]:
    
print weight_kg
    
    
In [6]:
    
print ('Weight in pounds: ', weight_kg * 2.2)
    
    
In [7]:
    
weight_kg = 57.5
    
In [8]:
    
print ('New weight: ', weight_kg * 2.2)
    
    
In [9]:
    
%whos
    
    
In [10]:
    
data = numpy.loadtxt(fname='data/weather-01.csv', delimiter = ',')
    
In [11]:
    
print data
    
    
In [12]:
    
print type(data)
    
    
In [13]:
    
# finding out the data type
print data.dtype
print data.shape
    
    
In [14]:
    
# Getting a single number out of the array
print 'First value in data: ', data [0,0]
    
    
In [15]:
    
print 'A middle data: ', data [10,10]
    
    
In [16]:
    
# Let's get the first 10 columns for the first 4 rows
print data[0:4,0:10]
    
    
In [17]:
    
print data[:3,36:]
    
    
In [18]:
    
smallchunk = data[3:10,5:12]
doublesmallchunk = smallchunk * 2
    
In [19]:
    
print doublesmallchunk
    
    
In [20]:
    
print (numpy.mean(data))
    
    
In [21]:
    
print (numpy.max(data))
    
    
In [22]:
    
print (numpy.min(data))
    
    
In [23]:
    
# get a set of data for the first station
station_0 = data[0,:]
    
In [24]:
    
print numpy.max(station_0)
    
    
In [25]:
    
print station_0
    
    
In [26]:
    
# We don't need to create 'temporary' array slices! We can refer to so-called array axes
print numpy.mean(data, axis = 0)
    
    
In [27]:
    
print data
    
    
In [28]:
    
import matplotlib.pyplot
    
In [29]:
    
%matplotlib inline
    
In [30]:
    
image = matplotlib.pyplot.imshow(data)
    
    
In [31]:
    
# Let's look at the average temperature over time
avg_temperature = numpy.mean(data, axis = 0)
    
In [32]:
    
avg_plot = matplotlib.pyplot.plot(avg_temperature)
    
    
In [33]:
    
max_temperature = numpy.max(data, axis = 0)
max_plot = matplotlib.pyplot.plot(max_temperature)
    
    
In [34]:
    
min_temperature = numpy.min(data, axis = 0)
min_plot = matplotlib.pyplot.plot(min_temperature)
    
    
In [ ]:
    
    
In [ ]:
    
    
In [ ]: