We are going to use a LIBRARY called numpy
In [1]:
    
import numpy
    
In [2]:
    
numpy.loadtxt(fname = 'data/weather-01.csv',delimiter = ',')
    
    Out[2]:
In [3]:
    
weight_kg = 55
    
In [4]:
    
print (weight_kg)
    
    
In [5]:
    
print ('Weight in pounds:', weight_kg * 2.2)
    
    
In [6]:
    
weight_kg = 57.5
    
In [7]:
    
print ('New Weight: ',weight_kg*2.2)
    
    
In [8]:
    
%whos
    
    
In [9]:
    
data = numpy.loadtxt(fname = 'data/weather-01.csv',delimiter = ',')
    
In [10]:
    
print (data)
    
    
In [12]:
    
print(type(data))
    
    
In [13]:
    
%whos
    
    
In [14]:
    
# Finding out the data type
print (data.dtype)
    
    
In [15]:
    
# Find out the shape
print(data.shape)
    
    
In [16]:
    
# This is 60 rows by 40 columns
    
In [17]:
    
# getting a single number out of the array
print ("First value in data: ", data [0, 0])
    
    
In [18]:
    
print ('a middle value: ', data[30, 20])
    
    
In [19]:
    
# Lets get the first 10 columns for the first 4 rows
print (data[0:4,0:10]) 
# index says start at 0 and go up to but dont include 4
    
    
In [20]:
    
# we dont need to start sices at zero
print (data [5:10,7:15])
    
    
In [21]:
    
# we dont even need to include the UPPER and LOWER bounds 
smallchunk = data [:3,36:]
print(smallchunk)
    
    
In [22]:
    
# aritmetic on arrays
doublesmallchunk = smallchunk * 2.0
    
In [23]:
    
print(doublesmallchunk)
    
    
In [24]:
    
triplesmallchunk = smallchunk + doublesmallchunk
    
In [25]:
    
print(triplesmallchunk)
    
    
In [26]:
    
print(numpy.mean(data))
    
    
In [27]:
    
print(numpy.mean(triplesmallchunk))
    
    
In [28]:
    
print(numpy.max(data))
    
    
In [29]:
    
print(numpy.min(data))
    
    
In [30]:
    
# get a set of data from the first station
station_0 = data [0, :]
    
In [31]:
    
print (numpy.max(station_0))
    
    
In [32]:
    
# We dont need to create 'temporary' array slices
# We can refer to what we call array axes
    
In [35]:
    
# axis  = 0 gets the mean down each column , so the mean 
# temperature for each recording period
print(numpy.mean(data, axis = 0))
    
    
In [36]:
    
# axis  = 0 gets the mean across each column , so the mean 
# temperature for each station for all periods
print(numpy.mean(data, axis =1))
    
    
In [37]:
    
# Do some simple visulisations
    
In [38]:
    
import matplotlib.pyplot
    
In [39]:
    
%matplotlib inline
    
In [40]:
    
image = matplotlib.pyplot.imshow(data)
    
    
In [41]:
    
# let's look at the average temperature over time
avg_temperature = numpy.mean(data,axis =0)
    
In [42]:
    
avg_plot = matplotlib.pyplot.plot(avg_temperature)
    
    
In [43]:
    
min_temperature = numpy.min(data,axis = 0)
max_temperature = numpy.max(data,axis = 0)
    
In [44]:
    
min_plot = matplotlib.pyplot.plot(min_temperature)
    
    
In [45]:
    
max_plot = matplotlib.pyplot.plot(max_temperature)
    
    
In [46]:
    
avg_plot = matplotlib.pyplot.plot(avg_temperature)
max_plot = matplotlib.pyplot.plot(max_temperature)
min_plot = matplotlib.pyplot.plot(min_temperature)
    
    
In [ ]: