In [14]:
    
import numpy
    
In [15]:
    
numpy.loadtxt(fname='data/weather-01.csv', delimiter = ',')
    
    Out[15]:
In [5]:
    
weight_kg = 55
    
In [10]:
    
print (weight_kg)
    
    
In [6]:
    
print ('Weight in pounds:', weight_kg * 2.2)
    
    
In [7]:
    
weight_kg = 57.5
    
In [8]:
    
print ('Weight in pounds:', weight_kg * 2.2)
    
    
In [16]:
    
%whos
    
    
In [6]:
    
data = numpy.loadtxt(fname='data/weather-01.csv', delimiter = ',')
    
In [13]:
    
print (data)
    
    
In [14]:
    
print (type(data))
    
    
In [15]:
    
%whos
    
    
In [16]:
    
# Finding out the data type
print (data.dtype)
    
    
In [17]:
    
# Find out the shape
print (data.shape)
    
    
In [18]:
    
# This is 60 rows *40 columns
    
In [19]:
    
# Getting a single number out of the array
print ("First value in data:", data [0,0])
    
    
In [20]:
    
print ('a middle value:', data [30,20])
    
    
In [21]:
    
# Lets get the first 10 columns for the first 4 rows
print (data [0:4, 0:10])
# start at index 0 and go upt to But not including index 4
    
    
In [22]:
    
# We don`t neet to start slicing at 0
print (data[5:10, 7:15])
    
    
In [17]:
    
# We dont even need to include the UPPER and LOWER bounds
smallchunk = data [:3, 36:]
print (smallchunk)
    
    
In [18]:
    
# Arithmetic on arrays
doublesmallchunk = smallchunk * 2.0
    
In [25]:
    
print (doublesmallchunk)
    
    
In [19]:
    
triplesmallchunk = smallchunk + doublesmallchunk
    
In [27]:
    
print (triplesmallchunk)
    
    
In [28]:
    
print (numpy.mean (data))
    
    
In [29]:
    
print (numpy.max(data))
    
    
In [30]:
    
print (numpy.min(data))
    
    
In [20]:
    
# Get a set of data for the first station
station_0 = data [0, :]
    
In [32]:
    
print (numpy.max (station_0))
    
    
In [33]:
    
# We don't need to create 'temporary' array slices
# We can refer to what we call array axes
    
In [35]:
    
# Axis = 0 gets the mean Down each column, so the mean temperatura for each recording period
print (numpy.mean (data, axis = 0))
    
    
In [8]:
    
# Axis = 1 gets the mean Across each row, so the mean temperatura for each recording period
print (numpy.mean (data, axis = 1))
    
    
In [37]:
    
# Do some simple visualisations
    
In [21]:
    
import matplotlib.pyplot
    
In [22]:
    
%matplotlib inline
    
In [23]:
    
image = matplotlib.pyplot.imshow(data)
    
    
In [24]:
    
# Let's look at the average temperature over time
avg_temperature = numpy.mean (data, axis = 0)
    
In [25]:
    
avg_plot = matplotlib.pyplot.plot(avg_temperature)
    
    
Task:
- Produce maximum and minimum plots of this data
- What do you think?
In [27]:
    
Max_plot = matplotlib.pyplot.plot (numpy.max(data, axis =0))
    
    
In [29]:
    
Min_plot = matplotlib.pyplot.plot (numpy.min(data, axis =0))
    
    
In [30]:
    
max_temp = numpy.max (data, axis=0)
min_temp = numpy.min (data, axis=0)
    
In [31]:
    
max_plot = matplotlib.pyplot.plot (max_temp)
min_plot = matplotlib.pyplot.plot (min_temp)
    
    
In [ ]: