In [ ]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Начните с TensorFlow 2.0 для экспертов

Note: Вся информация в этом разделе переведена с помощью русскоговорящего Tensorflow сообщества на общественных началах. Поскольку этот перевод не является официальным, мы не гарантируем что он на 100% аккуратен и соответствует официальной документации на английском языке. Если у вас есть предложение как исправить этот перевод, мы будем очень рады увидеть pull request в tensorflow/docs репозиторий GitHub. Если вы хотите помочь сделать документацию по Tensorflow лучше (сделать сам перевод или проверить перевод подготовленный кем-то другим), напишите нам на docs-ru@tensorflow.org list.

Это файл notebook. Программы Python programs запускающиеся прямо в браузере - хороший способ учить и использовать TensorFlow. Чтобы следовать этому руководству, запустите notebook в Google Colab нажав на соответствующую кнопку вверху этой страницы.

  1. В Colab подключитесь к среде исполнения Python: в правом верхнем углу строки меню выберите CONNECT.
  2. Запустите код во всех ячейках notebook: Выберите Runtime и Run all.

Скачайте и установите пакет TensorFlow 2.0:

Импортируйте TensorFlow в свою программу:


In [ ]:
import tensorflow as tf

from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model

Загрузите и приготовьте набор данных MNIST.


In [ ]:
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

Используйте tf.data чтобы разбить на пакеты и перемешать данные:


In [ ]:
train_ds = tf.data.Dataset.from_tensor_slices(
    (x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

Постройте модель tf.keras используя Keras model subclassing API:


In [ ]:
class MyModel(Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)

model = MyModel()

Выберите оптимизатор и функцию потерь для обучения:


In [ ]:
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()

optimizer = tf.keras.optimizers.Adam()

Выберите метрики для измерения потерь и доли правильных ответов (accuracy) модели. Эти метрики аккумулируют значения за эпохи и потом выводят общий результат.


In [ ]:
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

Используйте tf.GradientTape для обучения модели:


In [ ]:
@tf.function
def train_step(images, labels):
  with tf.GradientTape() as tape:
    predictions = model(images)
    loss = loss_object(labels, predictions)
  gradients = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

  train_loss(loss)
  train_accuracy(labels, predictions)

Протестируйте модель:


In [ ]:
@tf.function
def test_step(images, labels):
  predictions = model(images)
  t_loss = loss_object(labels, predictions)

  test_loss(t_loss)
  test_accuracy(labels, predictions)

In [ ]:
EPOCHS = 5

for epoch in range(EPOCHS):
  for images, labels in train_ds:
    train_step(images, labels)

  for test_images, test_labels in test_ds:
    test_step(test_images, test_labels)

  template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
  print (template.format(epoch+1,
                         train_loss.result(),
                         train_accuracy.result()*100,
                         test_loss.result(),
                         test_accuracy.result()*100))

Классификатор изображений теперь обучен на этих данных с точностью ~ 98%. Чтобы узнать больше, прочитайте учебники по TensorFlow.