In [ ]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Note: これらのドキュメントは私たちTensorFlowコミュニティが翻訳したものです。コミュニティによる 翻訳はベストエフォートであるため、この翻訳が正確であることや英語の公式ドキュメントの 最新の状態を反映したものであることを保証することはできません。 この翻訳の品質を向上させるためのご意見をお持ちの方は、GitHubリポジトリtensorflow/docsにプルリクエストをお送りください。 コミュニティによる翻訳やレビューに参加していただける方は、 docs-ja@tensorflow.org メーリングリストにご連絡ください。
このファイルは の notebook ファイルです。 Python プログラムはブラウザ上で直接実行されます。TensorFlow を学んだり使ったりするには最良の方法です。Google Colab の notebook の実行方法は以下のとおりです。
TensorFlow 2 のパッケージをダウンロードしてインストールします。
プログラムに TensorFlow をインポートします。
In [ ]:
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
MNIST データセットをロードして準備します。
In [ ]:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]
データセットをシャッフルし、バッチ化するために tf.data を使います。
In [ ]:
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
Kerasの model subclassing API を使ってtf.keras
モデルを作ります。
In [ ]:
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10, activation='softmax')
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# モデルのインスタンスを作成
model = MyModel()
訓練のためにオプティマイザと損失関数を選びます。
In [ ]:
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
モデルの損失と正解率を計測するためのメトリクスを選択します。これらのメトリクスはエポックごとに値を集計し、最終結果を出力します。
In [ ]:
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
tf.GradientTape
を使ってモデルを訓練します。
In [ ]:
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
次にモデルをテストします。
In [ ]:
@tf.function
def test_step(images, labels):
predictions = model(images)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
In [ ]:
EPOCHS = 5
for epoch in range(EPOCHS):
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print (template.format(epoch+1,
train_loss.result(),
train_accuracy.result()*100,
test_loss.result(),
test_accuracy.result()*100))
# 次のエポック用にメトリクスをリセット
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
この画像分類器は、今回のデータセットで訓練した場合、最大98%程度の正解率となります。更に学ぶには TensorFlow tutorials を読んでください。