In [ ]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Lưu ý: Cộng đồng TensorFlow tại Việt Nam đã và đang dịch những tài liệu này từ nguyên bản tiếng Anh. Những bản dịch này được hoàn thiện dựa trên sự nỗ lực đóng góp từ cộng đồng lập trình viên sử dụng TensorFlow, và điều này có thể không đảm bảo được tính cập nhật của bản dịch đối với Tài liệu chính thức bằng tiếng Anh này. Nếu bạn có bất kỳ đề xuất nào nhằm cải thiện bản dịch này, vui lòng tạo Pull request đến kho chứa trên GitHub của tensorflow/docs-l10n. Để đăng ký dịch hoặc cải thiện nội dung bản dịch, các bạn hãy liên hệ và đặt vấn đề tại docs-vi@tensorflow.org.
Đây là một tệp notebook . Các chương trình Python sẽ chạy trực tiếp trong trình duyệt, giúp bạn dễ dàng tìm hiểu và sử dụng TensorFlow. Để làm theo giáo trình này, chạy notebook trên Google Colab bằng cách nhấp vào nút ở đầu trang.
Tải và cài đặt TensorFlow 2.0 RC. Import TensorFlow vào chương trình:
In [ ]:
# Install TensorFlow
import tensorflow as tf
Load và chuẩn bị tập dữ liệu MNIST. Chuyển kiểu dữ liệu của các mẫu từ số nguyên sang số thực dấu phẩy động:
In [ ]:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Xây dựng mô hình tf.keras.Sequential
bằng cách xếp chồng các layers. Chọn trình tối ưu hoá (optimizer) và hàm thiệt hại (loss) để huấn luyện:
In [ ]:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
Huấn luyện và đánh giá mô hình:
In [ ]:
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test, verbose=2)
Mô hình phân loại ảnh này, sau khi được huấn luyện bằng tập dữ liệu trên, đạt độ chính xác (accuracy) ~98%. Để tìm hiểu thêm, bạn có thể đọc Giáo trình TensorFlow.