In [ ]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Note: 我们的 TensorFlow 社区翻译了这些文档。因为社区翻译是尽力而为, 所以无法保证它们是最准确的,并且反映了最新的 官方英文文档。如果您有改进此翻译的建议, 请提交 pull request 到 tensorflow/docs GitHub 仓库。要志愿地撰写或者审核译文,请加入 docs-zh-cn@tensorflow.org Google Group。
这是一个 笔记本文件。 Python程序可以直接在浏览器中运行,这是学习 Tensorflow 的绝佳方式。想要学习该教程,请点击此页面顶部的按钮,在Google Colab中运行笔记本。
下载并安装 TensorFlow 2.0 测试版包。将 TensorFlow 载入你的程序:
In [ ]:
# 安装 TensorFlow
import tensorflow as tf
载入并准备好 MNIST 数据集。将样本从整数转换为浮点数:
In [ ]:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
将模型的各层堆叠起来,以搭建 tf.keras.Sequential
模型。为训练选择优化器和损失函数:
In [ ]:
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
训练并验证模型:
In [ ]:
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test, verbose=2)
现在,这个照片分类器的准确度已经达到 98%。想要了解更多,请阅读 TensorFlow 教程。