In [ ]:
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Note: La nostra comunità di Tensorflow ha tradotto questi documenti. Poichè queste traduzioni sono best-effort, non è garantito che rispecchino in maniera precisa e aggiornata la documentazione ufficiale in inglese. Se avete suggerimenti per migliorare questa traduzione, mandate per favore una pull request al repository Github tensorflow/docs. Per proporsi come volontari alla scrittura o alla review delle traduzioni della comunità contattate la mailing list docs@tensorflow.org.
Questo è un notebook file. I programmi Python sono eseguiti direttamente nel browser—un ottimo modo per imparare e utilizzare TensorFlow. Per seguire questo tutorial, esegui il file notebook in Google Colab cliccando sul bottone in cima a questa pagina.
Scarica e installa il pacchetto TensorFlow 2:
Importa TensorFlow nel tuo codice:
In [ ]:
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
Carica e prepara il dataset MNIST.
In [ ]:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]
Usa tf.data
per raggruppare e mischiare il dataset:
In [ ]:
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
Costrusci il modello tf.keras
usando l'API Keras per creare sottoclassi di modelli:
In [ ]:
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10, activation='softmax')
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# Create an instance of the model
model = MyModel()
Scegli un metodo di ottimizzazione e una funzione obiettivo per l'addestramento:
In [ ]:
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
Seleziona delle metriche per misurare la pertita e l'accuratezza del modello. Queste metriche accumulano i valori alle varie epoche e alla fine stampano il risultato globale.
In [ ]:
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
Usa tf.GradientTape
per addestrare il modello:
In [ ]:
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
Testa il modello:
In [ ]:
@tf.function
def test_step(images, labels):
predictions = model(images)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
In [ ]:
EPOCHS = 5
for epoch in range(EPOCHS):
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print(template.format(epoch+1,
train_loss.result(),
train_accuracy.result()*100,
test_loss.result(),
test_accuracy.result()*100))
# Reset the metrics for the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
Il classificatore di immagini è ora addestrato per circa il 98% di accuratezza su questo insieme di dati. Per approfondire, leggi i tutorials di TensorFlow.