In [ ]:
%matplotlib inline
Raw <mne.io.Raw>
data structure: continuous dataContinuous data is stored in objects of type :class:Raw <mne.io.Raw>
.
The core data structure is simply a 2D numpy array (channels × samples)
(in memory or loaded on demand) combined with an
:class:Info <mne.Info>
object (.info
attribute)
(see tut_info_objects
).
The most common way to load continuous data is from a .fif file. For more
information on loading data from other formats <ch_convert>
, or
creating it from scratch <tut_creating_data_structures>
.
In [ ]:
import mne
import os.path as op
from matplotlib import pyplot as plt
In [ ]:
data_path = op.join(mne.datasets.sample.data_path(), 'MEG',
'sample', 'sample_audvis_raw.fif')
raw = mne.io.read_raw_fif(data_path, preload=True)
raw.set_eeg_reference('average', projection=True) # set EEG average reference
# Give the sample rate
print('sample rate:', raw.info['sfreq'], 'Hz')
# Give the size of the data matrix
print('%s channels x %s samples' % (len(raw), len(raw.times)))
This size can also be obtained by examining `raw._data.shape`. However this is a private attribute as its name starts with an `_`. This suggests that you should **not** access this variable directly but rely on indexing syntax detailed just below.
Information about the channels contained in the :class:Raw <mne.io.Raw>
object is contained in the :class:Info <mne.Info>
attribute.
This is essentially a dictionary with a number of relevant fields (see
tut_info_objects
).
To access the data stored within :class:Raw <mne.io.Raw>
objects,
it is possible to index the :class:Raw <mne.io.Raw>
object.
Indexing a :class:Raw <mne.io.Raw>
object will return two arrays: an array
of times, as well as the data representing those timepoints. This works
even if the data is not preloaded, in which case the data will be read from
disk when indexing. The syntax is as follows:
In [ ]:
# Extract data from the first 5 channels, from 1 s to 3 s.
sfreq = raw.info['sfreq']
data, times = raw[:5, int(sfreq * 1):int(sfreq * 3)]
_ = plt.plot(times, data.T)
_ = plt.title('Sample channels')
In [ ]:
# Pull all MEG gradiometer channels:
# Make sure to use .copy() or it will overwrite the data
meg_only = raw.copy().pick_types(meg=True)
eeg_only = raw.copy().pick_types(meg=False, eeg=True)
# The MEG flag in particular lets you specify a string for more specificity
grad_only = raw.copy().pick_types(meg='grad')
# Or you can use custom channel names
pick_chans = ['MEG 0112', 'MEG 0111', 'MEG 0122', 'MEG 0123']
specific_chans = raw.copy().pick_channels(pick_chans)
print(meg_only)
print(eeg_only)
print(grad_only)
print(specific_chans)
Notice the different scalings of these types
In [ ]:
f, (a1, a2) = plt.subplots(2, 1)
eeg, times = eeg_only[0, :int(sfreq * 2)]
meg, times = meg_only[0, :int(sfreq * 2)]
a1.plot(times, meg[0])
a2.plot(times, eeg[0])
del eeg, meg, meg_only, grad_only, eeg_only, data, specific_chans
You can restrict the data to a specific time range
In [ ]:
raw = raw.crop(0, 50) # in seconds
print('New time range from', raw.times.min(), 's to', raw.times.max(), 's')
And drop channels by name
In [ ]:
nchan = raw.info['nchan']
raw = raw.drop_channels(['MEG 0241', 'EEG 001'])
print('Number of channels reduced from', nchan, 'to', raw.info['nchan'])
In [ ]:
# Create multiple :class:`Raw <mne.io.RawFIF>` objects
raw1 = raw.copy().crop(0, 10)
raw2 = raw.copy().crop(10, 20)
raw3 = raw.copy().crop(20, 40)
# Concatenate in time (also works without preloading)
raw1.append([raw2, raw3])
print('Time extends from', raw1.times.min(), 's to', raw1.times.max(), 's')