In [ ]:
%matplotlib inline

The :class:Raw <mne.io.Raw> data structure: continuous data


In [ ]:
from __future__ import print_function

import mne
import os.path as op
from matplotlib import pyplot as plt

Continuous data is stored in objects of type :class:Raw <mne.io.Raw>. The core data structure is simply a 2D numpy array (channels × samples, stored in a private attribute called ._data) combined with an :class:Info <mne.Info> object (.info attribute) (see tut_info_objects).

The most common way to load continuous data is from a .fif file. For more information on loading data from other formats <ch_convert>, or creating it from scratch <tut_creating_data_structures>.

Loading continuous data


In [ ]:
# Load an example dataset, the preload flag loads the data into memory now
data_path = op.join(mne.datasets.sample.data_path(), 'MEG',
                    'sample', 'sample_audvis_raw.fif')
raw = mne.io.read_raw_fif(data_path, preload=True, add_eeg_ref=False)
raw.set_eeg_reference()  # set EEG average reference

# Give the sample rate
print('sample rate:', raw.info['sfreq'], 'Hz')
# Give the size of the data matrix
print('channels x samples:', raw._data.shape)

Note

Accessing the `._data` attribute is done here for educational purposes. However this is a private attribute as its name starts with an `_`. This suggests that you should **not** access this variable directly but rely on indexing syntax detailed just below.

Information about the channels contained in the :class:Raw <mne.io.Raw> object is contained in the :class:Info <mne.Info> attribute. This is essentially a dictionary with a number of relevant fields (see tut_info_objects).

Indexing data

To access the data stored within :class:Raw <mne.io.Raw> objects, it is possible to index the :class:Raw <mne.io.Raw> object.

Indexing a :class:Raw <mne.io.Raw> object will return two arrays: an array of times, as well as the data representing those timepoints. This works even if the data is not preloaded, in which case the data will be read from disk when indexing. The syntax is as follows:


In [ ]:
# Extract data from the first 5 channels, from 1 s to 3 s.
sfreq = raw.info['sfreq']
data, times = raw[:5, int(sfreq * 1):int(sfreq * 3)]
_ = plt.plot(times, data.T)
_ = plt.title('Sample channels')

Selecting subsets of channels and samples

It is possible to use more intelligent indexing to extract data, using channel names, types or time ranges.


In [ ]:
# Pull all MEG gradiometer channels:
# Make sure to use .copy() or it will overwrite the data
meg_only = raw.copy().pick_types(meg=True)
eeg_only = raw.copy().pick_types(meg=False, eeg=True)

# The MEG flag in particular lets you specify a string for more specificity
grad_only = raw.copy().pick_types(meg='grad')

# Or you can use custom channel names
pick_chans = ['MEG 0112', 'MEG 0111', 'MEG 0122', 'MEG 0123']
specific_chans = raw.copy().pick_channels(pick_chans)
print(meg_only, eeg_only, grad_only, specific_chans, sep='\n')

Notice the different scalings of these types


In [ ]:
f, (a1, a2) = plt.subplots(2, 1)
eeg, times = eeg_only[0, :int(sfreq * 2)]
meg, times = meg_only[0, :int(sfreq * 2)]
a1.plot(times, meg[0])
a2.plot(times, eeg[0])
del eeg, meg, meg_only, grad_only, eeg_only, data, specific_chans

You can restrict the data to a specific time range


In [ ]:
raw = raw.crop(0, 50)  # in seconds
print('New time range from', raw.times.min(), 's to', raw.times.max(), 's')

And drop channels by name


In [ ]:
nchan = raw.info['nchan']
raw = raw.drop_channels(['MEG 0241', 'EEG 001'])
print('Number of channels reduced from', nchan, 'to', raw.info['nchan'])

Concatenating :class:Raw <mne.io.Raw> objects

:class:Raw <mne.io.Raw> objects can be concatenated in time by using the :func:append <mne.io.Raw.append> function. For this to work, they must have the same number of channels and their :class:`Info

<mne.Info>` structures should be compatible.


In [ ]:
# Create multiple :class:`Raw <mne.io.RawFIF>` objects
raw1 = raw.copy().crop(0, 10)
raw2 = raw.copy().crop(10, 20)
raw3 = raw.copy().crop(20, 40)

# Concatenate in time (also works without preloading)
raw1.append([raw2, raw3])
print('Time extends from', raw1.times.min(), 's to', raw1.times.max(), 's')