In [ ]:
%matplotlib inline
In [ ]:
from __future__ import print_function
import mne
import os.path as op
from matplotlib import pyplot as plt
Continuous data is stored in objects of type :class:Raw <mne.io.RawFIF>
.
The core data structure is simply a 2D numpy array (channels × samples,
._data
) combined with an :class:Info <mne.Info>
object
(.info
) (:ref:tut_info_objects
.
The most common way to load continuous data is from a .fif file. For more
information on :ref:loading data from other formats <ch_convert>
, or
creating it :ref:from scratch <tut_creating_data_structures>
.
In [ ]:
# Load an example dataset, the preload flag loads the data into memory now
data_path = op.join(mne.datasets.sample.data_path(), 'MEG',
'sample', 'sample_audvis_raw.fif')
raw = mne.io.RawFIF(data_path, preload=True, verbose=False)
# Give the sample rate
print('sample rate:', raw.info['sfreq'], 'Hz')
# Give the size of the data matrix
print('channels x samples:', raw._data.shape)
Information about the channels contained in the :class:Raw <mne.io.RawFIF>
object is contained in the :class:Info <mne.Info>
attribute.
This is essentially a dictionary with a number of relevant fields (see
:ref:tut_info_objects
).
There are two ways to access the data stored within :class:`Raw
<mne.io.RawFIF>objects. One is by accessing the underlying data array, and
the other is to index the :class:
Raw <mne.io.RawFIF>` object directly.
To access the data array of :class:Raw <mne.io.Raw>
objects, use the
_data
attribute. Note that this is only present if preload==True
.
In [ ]:
print('Shape of data array:', raw._data.shape)
array_data = raw._data[0, :1000]
_ = plt.plot(array_data)
You can also pass an index directly to the :class:Raw <mne.io.RawFIF>
object. This will return an array of times, as well as the data representing
those timepoints. This may be used even if the data is not preloaded:
In [ ]:
# Extract data from the first 5 channels, from 1 s to 3 s.
sfreq = raw.info['sfreq']
data, times = raw[:5, int(sfreq * 1):int(sfreq * 3)]
_ = plt.plot(times, data.T)
_ = plt.title('Sample channels')
In [ ]:
# Pull all MEG gradiometer channels:
# Make sure to use .copy() or it will overwrite the data
meg_only = raw.copy().pick_types(meg=True)
eeg_only = raw.copy().pick_types(meg=False, eeg=True)
# The MEG flag in particular lets you specify a string for more specificity
grad_only = raw.copy().pick_types(meg='grad')
# Or you can use custom channel names
pick_chans = ['MEG 0112', 'MEG 0111', 'MEG 0122', 'MEG 0123']
specific_chans = raw.copy().pick_channels(pick_chans)
print(meg_only, eeg_only, grad_only, specific_chans, sep='\n')
Notice the different scalings of these types
In [ ]:
f, (a1, a2) = plt.subplots(2, 1)
eeg, times = eeg_only[0, :int(sfreq * 2)]
meg, times = meg_only[0, :int(sfreq * 2)]
a1.plot(times, meg[0])
a2.plot(times, eeg[0])
del eeg, meg, meg_only, grad_only, eeg_only, data, specific_chans
You can restrict the data to a specific time range
In [ ]:
raw = raw.crop(0, 50) # in seconds
print('New time range from', raw.times.min(), 's to', raw.times.max(), 's')
And drop channels by name
In [ ]:
nchan = raw.info['nchan']
raw = raw.drop_channels(['MEG 0241', 'EEG 001'])
print('Number of channels reduced from', nchan, 'to', raw.info['nchan'])
In [ ]:
# Create multiple :class:`Raw <mne.io.RawFIF>` objects
raw1 = raw.copy().crop(0, 10)
raw2 = raw.copy().crop(10, 20)
raw3 = raw.copy().crop(20, 40)
# Concatenate in time (also works without preloading)
raw1.append([raw2, raw3])
print('Time extends from', raw1.times.min(), 's to', raw1.times.max(), 's')