In [ ]:
%matplotlib inline

.. _tut_raw_objects:

The :class:Raw <mne.io.Raw> data structure: continuous data


In [ ]:
from __future__ import print_function

import mne
import os.path as op
from matplotlib import pyplot as plt

Continuous data is stored in objects of type :class:Raw <mne.io.RawFIF>. The core data structure is simply a 2D numpy array (channels × samples, ._data) combined with an :class:Info <mne.Info> object (.info) (:ref:tut_info_objects.

The most common way to load continuous data is from a .fif file. For more information on :ref:loading data from other formats <ch_convert>, or creating it :ref:from scratch <tut_creating_data_structures>.

Loading continuous data


In [ ]:
# Load an example dataset, the preload flag loads the data into memory now
data_path = op.join(mne.datasets.sample.data_path(), 'MEG',
                    'sample', 'sample_audvis_raw.fif')
raw = mne.io.RawFIF(data_path, preload=True, verbose=False)

# Give the sample rate
print('sample rate:', raw.info['sfreq'], 'Hz')
# Give the size of the data matrix
print('channels x samples:', raw._data.shape)

Information about the channels contained in the :class:Raw <mne.io.RawFIF> object is contained in the :class:Info <mne.Info> attribute. This is essentially a dictionary with a number of relevant fields (see :ref:tut_info_objects).

Indexing data

There are two ways to access the data stored within :class:`Raw

<mne.io.RawFIF>objects. One is by accessing the underlying data array, and the other is to index the :class:Raw <mne.io.RawFIF>` object directly.

To access the data array of :class:Raw <mne.io.Raw> objects, use the _data attribute. Note that this is only present if preload==True.


In [ ]:
print('Shape of data array:', raw._data.shape)
array_data = raw._data[0, :1000]
_ = plt.plot(array_data)

You can also pass an index directly to the :class:Raw <mne.io.RawFIF> object. This will return an array of times, as well as the data representing those timepoints. This may be used even if the data is not preloaded:


In [ ]:
# Extract data from the first 5 channels, from 1 s to 3 s.
sfreq = raw.info['sfreq']
data, times = raw[:5, int(sfreq * 1):int(sfreq * 3)]
_ = plt.plot(times, data.T)
_ = plt.title('Sample channels')

Selecting subsets of channels and samples

It is possible to use more intelligent indexing to extract data, using channel names, types or time ranges.


In [ ]:
# Pull all MEG gradiometer channels:
# Make sure to use .copy() or it will overwrite the data
meg_only = raw.copy().pick_types(meg=True)
eeg_only = raw.copy().pick_types(meg=False, eeg=True)

# The MEG flag in particular lets you specify a string for more specificity
grad_only = raw.copy().pick_types(meg='grad')

# Or you can use custom channel names
pick_chans = ['MEG 0112', 'MEG 0111', 'MEG 0122', 'MEG 0123']
specific_chans = raw.copy().pick_channels(pick_chans)
print(meg_only, eeg_only, grad_only, specific_chans, sep='\n')

Notice the different scalings of these types


In [ ]:
f, (a1, a2) = plt.subplots(2, 1)
eeg, times = eeg_only[0, :int(sfreq * 2)]
meg, times = meg_only[0, :int(sfreq * 2)]
a1.plot(times, meg[0])
a2.plot(times, eeg[0])
del eeg, meg, meg_only, grad_only, eeg_only, data, specific_chans

You can restrict the data to a specific time range


In [ ]:
raw = raw.crop(0, 50)  # in seconds
print('New time range from', raw.times.min(), 's to', raw.times.max(), 's')

And drop channels by name


In [ ]:
nchan = raw.info['nchan']
raw = raw.drop_channels(['MEG 0241', 'EEG 001'])
print('Number of channels reduced from', nchan, 'to', raw.info['nchan'])

Concatenating :class:Raw <mne.io.RawFIF> objects

:class:Raw <mne.io.RawFIF> objects can be concatenated in time by using the :func:append <mne.io.RawFIF.append> function. For this to work, they must have the same number of channels and their :class:`Info

<mne.Info>` structures should be compatible.


In [ ]:
# Create multiple :class:`Raw <mne.io.RawFIF>` objects
raw1 = raw.copy().crop(0, 10)
raw2 = raw.copy().crop(10, 20)
raw3 = raw.copy().crop(20, 40)

# Concatenate in time (also works without preloading)
raw1.append([raw2, raw3])
print('Time extends from', raw1.times.min(), 's to', raw1.times.max(), 's')