In [1]:
import sympy as sym
In [2]:
#Con esto las salidas van a ser en LaTeX
sym.init_printing(use_latex=True)
In [5]:
x_1, x_2, a, b, c= sym.symbols('x_1 x_2 a b c')
In [7]:
sym.Symbol("a",positive=True)
sym.Symbol("b",positive=True)
sym.Symbol("c",positive=True)
Out[7]:
In [8]:
X = sym.Matrix([x_1, x_2])
X
Out[8]:
In [18]:
f_1 = a * x_1 - x_1 * x_2
f_1
In [11]:
f_2 = b * x_1 ** 2 - c * x_2
f_2
Out[11]:
In [12]:
F = sym.Matrix([f_1,f_2])
F
Out[12]:
In [17]:
# puntos de equilibrio del sistema
pes = sym.solve([f_1,f_2],[x_1,x_2])
pes
Out[17]:
In [15]:
A = F.jacobian(X)
A
Out[15]:
In [23]:
A_1 = A.subs({x_1:pes[0][0],x_2:pes[0][0]})
A_1
Out[23]:
In [25]:
A_2 = A.subs({x_1:pes[1][0],x_2:pes[1][1]})
A_2
Out[25]:
In [28]:
A_2.eigenvals()
Out[28]:
In [30]:
A_3 = A.subs({x_1:pes[2][0],x_2:pes[2][1]})
A_3
Out[30]:
In [31]:
A_3.eigenvals()
Out[31]:
In [ ]: