Mostrar que cada uno de los siguientes sistemas tiene una orbita periódica:
a)
$$\left{ \begin{array}{lcc}
\dot{x}_{1}=x_{2} \\
\\ \dot{x}_{2}=-x_{1}+x_{2}(1-3x_{1}^{2}-2x_{2}^{2})
\end{array}
\right.$$
b)
In [1]:
import sympy as sym
In [2]:
#Con esto las salidas van a ser en LaTeX
sym.init_printing(use_latex=True)
In [3]:
x_1, x_2 = sym.symbols('x_1 x_2')
In [4]:
X = sym.Matrix([x_1, x_2])
X
Out[4]:
In [5]:
f_1 = x_2
In [6]:
f_2 = -x_1 + x_2 * (1 - 3 * x_1 ** 2 - 2 * x_2 ** 2)
f_2
Out[6]:
In [7]:
F = sym.Matrix([f_1,f_2])
F
Out[7]:
In [8]:
A = F.jacobian(X)
#A.simplify()
A
Out[8]:
In [18]:
# puntos de equilibrio del sistema
pes = sym.solve([f_1,f_2],[x_1,x_2])
pes
Out[18]:
In [20]:
A_1 = A.subs({x_1:0,x_2:0})
A_1
Out[20]:
In [21]:
A_1.eigenvals()
Out[21]:
In [28]:
eq =2 * x_2 ** 2 - 6 * x_1 * x_2 ** 2 - 4 * x_2 ** 4
In [29]:
eq.factor()
Out[29]:
In [27]:
sym.plot_implicit(eq)
Out[27]:
In [ ]: