In [1]:
%pylab inline
A three-phase 60-Hz two-pole induction motor runs at a no-load speed of 3580 r/min and a full-load speed of 3440 r/min.
In [2]:
fe = 60 # [Hz]
p = 2
n_nl = 3580 # [r/min]
n_fl = 3440 # [r/min]
The synchronous speed of this machine is:
$$n_\text{sync} = \frac{120f_{se}}{p}$$
In [3]:
n_sync = 120*fe / p
print('n_sync = {:.0f} r/min'.format(n_sync))
The slip and electrical frequency at no-load conditions is:
$$S_\text{nl} = \frac{n_\text{sync} - n_\text{nl}}{n_\text{sync}} \cdot 100\%$$
In [4]:
s_nl = (n_sync - n_nl) / n_sync
print('''
s_nl = {:.2f} %
============='''.format(s_nl*100))
In [5]:
f_rnl = s_nl * fe
print('''
f_rnl = {:.2f} Hz
==============='''.format(f_rnl))
The slip and electrical frequency at full load conditions is:
$$ S_\text{fl} = \frac{n_\text{sync} - n_\text{fl}}{n_\text{sync}} \cdot 100\%$$
In [6]:
s_fl = (n_sync - n_fl) / n_sync
print('''
s_fl = {:.2f} %
============='''.format(s_fl*100))
In [7]:
f_rfl = s_fl * fe
print('''
f_rfl = {:.2f} Hz
==============='''.format(f_rfl))
The speed regulation is:
$$SR = \frac{n_\text{nl} - n_\text{fl}}{n_\text{fl}} \cdot 100\%$$
In [8]:
SR = (n_nl - n_fl) / n_fl
print('''
SR = {:.2f} %
==========='''.format(SR*100))