In [1]:
%pylab inline
Assume that the field current of the generator in Problem 4-2 has been adjusted to a value of $5\,A$.
Now assume that another identical $\Delta$-connected load is to be paralleled with the first one.
In [2]:
If = 5.0 # [A]
PF = 0.9
Xs = 2.5 # [Ohm]
Ra = 0.2 # [Ohm]
Zload = 24 * (cos(25/180.0 * pi) + sin(25/180.0 * pi)*1j)
P = 50e6 # [W]
Pf_w = 1.0e6 # [W]
Pcore = 1.5e6 # [W]
Pstray = 0 # [W]
n_m = 1800 # [r/min]
In [3]:
Vl = 16.5e3 #[V]
ia = P / (sqrt(3) * Vl)
Ia_angle = -arccos(PF)
Ia = ia * (cos(Ia_angle) + sin(Ia_angle)*1j)
Ea = Vl / sqrt(3)
print('Ea = {:.0f} V'.format(Ea))
The load is $\Delta$-connected with three impedances of $24\,\Omega \angle 25^\circ$ . From the Y-$\Delta$ transform, this load is equivalent to a Y-connected load with three impedances of:
In [4]:
Z = Zload/3
Z_angle = arctan(Z.imag/Z.real)
print('Z = {:.0f} Ω ∠{:.0f}° '.format(abs(Z), Z_angle / pi*180))
The resulting per-phase equivalent circuit is shown below:
The magnitude of the phase current flowing in this generator is:
$$I_A = \frac{E_A}{|R_A + jX_S +Z|}$$
In [5]:
ia = Ea / (abs(Ra + Xs*1j + Z))
print('ia = {:.0f} A'.format(ia))
Ia = ia * (cos(-Z_angle) + sin(-Z_angle)*1j)
Ia_angle = arctan(Ia.imag/Ia.real)
Therefore, the magnitude of the phase voltage is: $$V_\phi = I_AZ$$
In [6]:
V_phase = ia * abs(Z)
print('V_phase = {:.0f} V'.format(V_phase))
and the terminal voltage is: $$V_T = \sqrt{3}V_\phi$$
In [7]:
Vt = sqrt(3) * V_phase
print('''
Vt = {:.0f} V
============'''.format(Vt))
In [8]:
EA = V_phase + Ra*Ia + Xs*1j*Ia
EA_angle = arctan(EA.imag/EA.real)
print('EA = {:.0f} V ∠{:.1f}°'.format(abs(EA), EA_angle / pi *180))
The resulting phasor diagram is shown below (not to scale and with some round-off errors):
In [9]:
Pout = 3 * V_phase * abs(Ia) * cos(Ia_angle)
print('Pout = {:.1f} MW'.format(Pout/1e6))
In [10]:
Pcu = 3 * abs(Ia)**2 * Ra
print('Pcu = {:.1f} kW'.format(Pcu/1e3))
$P_\text{F\&W} = 1\,MW$:
In [11]:
Pf_w = 1e6 # [W]
$P_\text{core} = 1.5\,MW$:
In [12]:
Pcore = 1.5e6 # [W]
$P_\text{stray} \approx 0$ (assumed):
In [13]:
Pstray = 0 # [W]
In [14]:
Pin = Pout + Pcu + Pf_w + Pcore + Pstray
print('Pin = {:.1f} MW'.format(Pin/1e6))
In [15]:
eta = Pout / Pin
print('''
η = {:.1f} %
=========='''.format(eta*100))
To get the basic idea of what happens, we will ignore the armature resistance for the moment. If the field current and the rotational speed of the generator are constant, then the magnitude of $E_A( = K \phi\omega)$ is constant. The quantity $jX_S \vec{I}_A$ increases in length at the same angle, while the magnitude of $\vec{E}_A$ must remain constant. Therefore, $\vec{E}_A$ “swings” out along the arc of constant magnitude until the new $jX_S \vec{I}_S$ fits exactly between $\vec{V}_\phi$ and $\vec{E}_A$ .
In [16]:
Znew = Z * 0.5
Znew_angle = arctan(Z.imag/Z.real)
print('Z = {:.0f} Ω ∠{:.0f}° '.format(abs(Znew), Znew_angle /pi*180))
The magnitude of the phase current flowing in this generator is: $$I_A = \frac{E_A}{|R_A + jX_S +Z_\text{new}|}$$
In [17]:
ia = Ea / (abs(Ra + Xs*1j + Znew))
print('ia = {:.1f} A'.format(ia))
Therefore, the magnitude of the phase voltage is: $$V_\phi = I_AZ_\text{new}$$
In [18]:
V_phase = ia * abs(Znew)
print('V_phase = {:.1f} V'.format(V_phase))
and the terminal voltage is:
$$V_T = \sqrt{3}V_\phi$$
In [19]:
Vt = sqrt(3) * V_phase
print('''
Vt = {:.1f} V
=============='''.format(Vt))