In [1]:
%pylab inline
The internal generated voltage $E_A$ of a 2-pole, $\Delta$-connected, 60 Hz, three phase synchronous generator is $14.4\,kV$, and the terminal voltage $V_T$ is $12.8\,kV$. The synchronous reactance of this machine is $4\,\Omega$, and the armature resistance can be ignored.
In [2]:
p = 2
fm = 60 # [Hz]
Ea = 14.4e3 # [V]
V_phase = 12.8e3 # [V]
Xs = 4.0 # [Ohm]
If the torque angle of the generator $\delta = 18^\circ$
Ignoring losses in this generator
In [3]:
delta = 18 /180.0 * pi # [rad]
P = (3*V_phase*Ea) / Xs * sin(delta)
print('''
P = {:.1f} MW
==========='''.format(P/1e6))
In [4]:
EA = Ea * (cos(delta) + sin(delta) * 1j)
Ia = (EA - V_phase) / (Xs*1j)
Ia_angle = arctan(Ia.imag/Ia.real)
print('Ia = {:.0f} ∠{:.1f}° A'.format(abs(Ia), Ia_angle/pi*180))
print('''
Therefore the impedance angle θ = {:.1f}°, and the power factor is cos({:.1f}°) = {:.2} lagging.
=============================================================================================
'''.format(-Ia_angle/pi*180, Ia_angle/pi*180, cos(Ia_angle)))
In [5]:
wm = 2*pi *fm
tau = P/ wm
print('''
τ_app = {:.0f} Nm
================='''.format(tau))