Excercises Electric Machinery Fundamentals

Chapter 4

Problem 4-6


In [1]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

Description

The internal generated voltage $E_A$ of a 2-pole, $\Delta$-connected, 60 Hz, three phase synchronous generator is $14.4\,kV$, and the terminal voltage $V_T$ is $12.8\,kV$. The synchronous reactance of this machine is $4\,\Omega$, and the armature resistance can be ignored.


In [2]:
p       = 2
fm      = 60     # [Hz]
Ea      = 14.4e3 # [V]
V_phase = 12.8e3 # [V]
Xs      = 4.0    # [Ohm]

(a)

If the torque angle of the generator $\delta = 18^\circ$

  • How much power is being supplied by this generator at the current time?

(b)

  • What is the power factor of the generator at this time?

(c)

  • Sketch the phasor diagram under these circumstances.

(d)

Ignoring losses in this generator

  • What torque must be applied to its shaft by the prime mover at these conditions?

SOLUTION

(a)

If resistance is ignored, the output power from this generator is given by:

$$P = \frac{3V_\phi E_A}{X_S} \sin{\delta}$$

In [3]:
delta = 18 /180.0 * pi # [rad]
P = (3*V_phase*Ea) / Xs * sin(delta)
print('''
P = {:.1f} MW
==========='''.format(P/1e6))


P = 42.7 MW
===========

(b)

The phase current flowing in this generator can be calculated from:

$$\vec{E}_A = \vec{V}_\phi + jX_S\vec{I}_A$$$$\vec{I}_A = \frac{\vec{E}_A-\vec{V}_\phi}{jX_S}$$

In [4]:
EA = Ea * (cos(delta) + sin(delta) * 1j)
Ia = (EA - V_phase) / (Xs*1j)
Ia_angle = arctan(Ia.imag/Ia.real)
print('Ia = {:.0f}{:.1f}° A'.format(abs(Ia), Ia_angle/pi*180))
print('''
Therefore the impedance angle θ = {:.1f}°, and the power factor is cos({:.1f}°) = {:.2} lagging.
=============================================================================================
'''.format(-Ia_angle/pi*180, Ia_angle/pi*180, cos(Ia_angle)))


Ia = 1135 ∠-11.4° A

Therefore the impedance angle θ = 11.4°, and the power factor is cos(-11.4°) = 0.98 lagging.
=============================================================================================

(c)

The phasor diagram is:

(d)

The induced torque is given by the equation:

$$P_\text{conv} = \tau_\text{ind} \omega_m$$

With no losses,

$$\tau_\text{app} = \tau_\text{ind} = \frac{P_\text{conv}}{\omega_m}$$

In [5]:
wm = 2*pi *fm
tau = P/ wm
print('''
τ_app = {:.0f} Nm
================='''.format(tau))


τ_app = 113314 Nm
=================