In [1]:
%pylab inline
%precision 1
Out[1]:
In [2]:
B = 0.5 #[T]
R = 0.25 #[Ohm]
l = 1.0 #[m]
Vb = 100 #[V]
In [3]:
i = Vb/R
i
Out[3]:
Amperes. Therefore, the force on the bar at starting is
$$ \vec{F} = i(\vec{l}\times\vec{B}) = ilB$$
In [4]:
F = i*l*B
F
Out[4]:
Newton, to the right.
The no-load steady-state speed of this bar can be found from the equation
$$ V_B = e_\text{ind} = (\vec{v}\times \vec{B}) \cdot \vec{l} = vBl $$$$ \rightarrow v = \frac{V_B}{Bl} $$
In [5]:
v = Vb / (B*l)
v
Out[5]:
metres/second.
In [6]:
Fapp = 25 #[N]
i = Fapp / (B*l)
i
Out[6]:
The induced voltage in the bar will be $$ e_\text{ind} = V_B - iR $$
In [7]:
e_ind = Vb - i*R
e_ind
Out[7]:
Volts, and the velocity of the bar will be
$$v = \frac{e_\text{ind}}{Bl}$$
In [8]:
v = e_ind / (B*l)
v
Out[8]:
m/s. The input power to the linear machine under these conditions is $P_\text{in} = V_B i$
In [9]:
Pin = Vb*i
Pin
Out[9]:
Watts. The output power from the linear machine under these conditions is $P_\text{out} = V_B i$
In [10]:
Pout = e_ind * i
Pout
Out[10]:
Watts. Therefore, the efficiency of the machine under these conditions is
$$ \eta = \frac{P_\text{out}}{P_\text{in}} $$
In [11]:
eta = Pout/Pin * 100 # [%]
eta
Out[11]:
percent.