DataSet:
**********
**********
SIZE: 1.0
NAME: patient_filter
ALL TRAIN: (9155, 68)
TRAIN: [0's: 7956 1's: 1199 ]
ALL TEST: (36624, 68)
TEST: [0's: 31829 1's: 4795 ]
Num experiment: 0 / 1
****************
FS: none
SM: none
CLS: rf
METRIC: recall
Fitting 5 folds for each of 50 candidates, totalling 250 fits
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 22.0s
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 1.9min
[Parallel(n_jobs=-1)]: Done 250 out of 250 | elapsed: 2.8min finished
TRAIN f1 (weighted): 0.530
TRAIN Precision [c=0,1]: [ 0.89699571 0.15017505]
TRAIN Recall [c=0,1]: [ 0.42031171 0.67973311]
TRAIN AUC: 0.550
TRAIN sensitivity: 0.679733110926
TRAIN Specificity: 0.420311714429
CV INNER metric: recall
CV INNER selected params ['gini', 2, 'balanced_subsample', 50]
CV INNER score: 0.653333333333
CV OUTER f1-weighted score: 0.533 (+/-0.042)
CV OUTER prec score [c=0,1]: 0.895 (+/- 0.008), 0.149 (+/- 0.002)
CV OUTER rec score [c=0,1]: 0.428 (+/- 0.055), 0.663 (+/- 0.068)
CV OUTER AUC score: 0.566 (+/-0.012)
CV OUTER sensitivity score: 0.663 (+/-0.068)
CV OUTER Specificity score: 0.428 (+/-0.055)
Selected params (bests from CV) ['gini', 2, 'balanced_subsample', 50]
TEST f1 (weighted): 0.528
TEST Precision [c=0,1]: [ 0.89780235 0.15048187]
TEST Recall [c=0,1]: [ 0.41842345 0.68383733]
TEST AUC: 0.551
TEST sensitivity: 0.683837330553
TEST Specificity: 0.418423450313
Confussion matrix:
| PRED
REAL--> v
[[13318 18511]
[ 1516 3279]]
Total time: 184.61264205
Num experiment: 1 / 1
****************
FS: none
SM: none
CLS: rf
METRIC: roc_auc
Fitting 5 folds for each of 50 candidates, totalling 250 fits
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 21.0s
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 1.9min
[Parallel(n_jobs=-1)]: Done 250 out of 250 | elapsed: 2.7min finished
TRAIN f1 (weighted): 0.539
TRAIN Precision [c=0,1]: [ 0.89557292 0.15014111]
TRAIN Recall [c=0,1]: [ 0.43225239 0.66555463]
TRAIN AUC: 0.549
TRAIN sensitivity: 0.665554628857
TRAIN Specificity: 0.432252388135
CV INNER metric: roc_auc
CV INNER selected params ['entropy', 2, 'balanced_subsample', 500]
CV INNER score: 0.558709910162
CV OUTER f1-weighted score: 0.543 (+/-0.041)
CV OUTER prec score [c=0,1]: 0.893 (+/- 0.005), 0.149 (+/- 0.002)
CV OUTER rec score [c=0,1]: 0.441 (+/- 0.054), 0.649 (+/- 0.061)
CV OUTER AUC score: 0.568 (+/-0.011)
CV OUTER sensitivity score: 0.649 (+/-0.061)
CV OUTER Specificity score: 0.441 (+/-0.054)
Selected params (bests from CV) ['entropy', 2, 'balanced_subsample', 500]
TEST f1 (weighted): 0.540
TEST Precision [c=0,1]: [ 0.89717925 0.15128543]
TEST Recall [c=0,1]: [ 0.43369254 0.67007299]
TEST AUC: 0.552
TEST sensitivity: 0.670072992701
TEST Specificity: 0.433692544535
Confussion matrix:
| PRED
REAL--> v
[[13804 18025]
[ 1582 3213]]
Total time: 192.325235128
DataSet:
**********
**********
SIZE: 1.0
NAME: admision_discharge_filter
ALL TRAIN: (9155, 68)
TRAIN: [0's: 7956 1's: 1199 ]
ALL TEST: (36624, 68)
TEST: [0's: 31829 1's: 4795 ]
Num experiment: 0 / 1
****************
FS: none
SM: none
CLS: rf
METRIC: recall
Fitting 5 folds for each of 50 candidates, totalling 250 fits
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 38.9s
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 3.0min
[Parallel(n_jobs=-1)]: Done 250 out of 250 | elapsed: 4.2min finished
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/utils/validation.py:475: DataConversionWarning: Data with input dtype object was converted to float64 by StandardScaler.
warnings.warn(msg, DataConversionWarning)
TRAIN f1 (weighted): 0.711
TRAIN Precision [c=0,1]: [ 0.89595943 0.18507561]
TRAIN Recall [c=0,1]: [ 0.68841126 0.46955796]
TRAIN AUC: 0.579
TRAIN sensitivity: 0.469557964971
TRAIN Specificity: 0.688411261941
CV INNER metric: recall
CV INNER selected params ['entropy', 2, 'balanced_subsample', 50]
CV INNER score: 0.513888888889
CV OUTER f1-weighted score: 0.677 (+/-0.031)
CV OUTER prec score [c=0,1]: 0.897 (+/- 0.003), 0.176 (+/- 0.009)
CV OUTER rec score [c=0,1]: 0.630 (+/- 0.051), 0.522 (+/- 0.045)
CV OUTER AUC score: 0.602 (+/-0.011)
CV OUTER sensitivity score: 0.522 (+/-0.045)
CV OUTER Specificity score: 0.630 (+/-0.051)
Selected params (bests from CV) ['entropy', 2, 'balanced_subsample', 50]
TEST f1 (weighted): 0.714
TEST Precision [c=0,1]: [ 0.89960169 0.19150843]
TEST Recall [c=0,1]: [ 0.68830312 0.49009385]
TEST AUC: 0.589
TEST sensitivity: 0.490093847758
TEST Specificity: 0.688303119796
Confussion matrix:
| PRED
REAL--> v
[[21908 9921]
[ 2445 2350]]
Total time: 285.66348505
Num experiment: 1 / 1
****************
FS: none
SM: none
CLS: rf
METRIC: roc_auc
Fitting 5 folds for each of 50 candidates, totalling 250 fits
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 38.9s
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 3.0min
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-8-b93b1c4e2cb7> in <module>()
2 models, train_preds, test_preds = train_inner_models(columns, X_train, X_test, y_train, y_test,
3 cv_folds, cv_thr, fs_methods, sm_method, sm_types, cls_methods, lms,
----> 4 featFilters)
<ipython-input-7-208ba92a2d7e> in train_inner_models(columns, X_train, X_test, y_train, y_test, cv_folds, cv_thr, fs_methods, sm_method, sm_types, cls_methods, lms, featFilters, verbose, save)
43 cv_inner = cv_inner,
44 cv_outer = cv_outer,
---> 45 verbose = verbose, save = save)[0]
46
47 #Get predictions
/home/ilmira/healthforecast/readmission/src/MLpipeline.py in run_pipeline(name, pipeline, X_train, X_test, y_train, y_test, tr_thr, ts_thr, cv_inner, cv_outer, verbose, save)
235 grid_pipeline = GridSearchCV(pipeline_cls, param_grid=pipeline_params, verbose=verbose,
236 n_jobs=-1, cv=cv_inner, scoring= lm, error_score = 0)
--> 237 grid_pipeline.fit(X_train, y_train)
238
239
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/model_selection/_search.pyc in fit(self, X, y, groups, **fit_params)
637 error_score=self.error_score)
638 for parameters, (train, test) in product(candidate_params,
--> 639 cv.split(X, y, groups)))
640
641 # if one choose to see train score, "out" will contain train score info
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
787 # consumption.
788 self._iterating = False
--> 789 self.retrieve()
790 # Make sure that we get a last message telling us we are done
791 elapsed_time = time.time() - self._start_time
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
697 try:
698 if getattr(self._backend, 'supports_timeout', False):
--> 699 self._output.extend(job.get(timeout=self.timeout))
700 else:
701 self._output.extend(job.get())
/home/ilmira/.conda/envs/readmision/lib/python2.7/multiprocessing/pool.pyc in get(self, timeout)
559
560 def get(self, timeout=None):
--> 561 self.wait(timeout)
562 if not self._ready:
563 raise TimeoutError
/home/ilmira/.conda/envs/readmision/lib/python2.7/multiprocessing/pool.pyc in wait(self, timeout)
554 try:
555 if not self._ready:
--> 556 self._cond.wait(timeout)
557 finally:
558 self._cond.release()
/home/ilmira/.conda/envs/readmision/lib/python2.7/threading.pyc in wait(self, timeout)
338 try: # restore state no matter what (e.g., KeyboardInterrupt)
339 if timeout is None:
--> 340 waiter.acquire()
341 if __debug__:
342 self._note("%s.wait(): got it", self)
KeyboardInterrupt: