['all']
EXPERIMENT: all
******************
(67182, 69)
Index([u'gender', u'age', u'race_AfricanAmerican', u'race_Caucasian',
u'race_Other', u'HbA1c', u'Change', u'time_in_hospital', u'diabetesMed',
u'diss_home', u'medSpec_cardio', u'medSpec_Family/GeneralPractice',
u'medSpec_InternalMedicine', u'medSpec_surgery', u'adm_src_1',
u'adm_src_2', u'adm_src_3', u'adm_src_4', u'adm_src_5', u'adm_src_6',
u'adm_src_7', u'adm_src_8', u'adm_src_10', u'adm_src_11', u'adm_src_13',
u'adm_src_14', u'adm_src_22', u'adm_src_25', u'adm_1', u'adm_2',
u'adm_3', u'adm_4', u'adm_7', u'number_treatment',
u'num_lab_procedures', u'num_procedures', u'num_medications',
u'number_outpatient', u'number_emergency', u'number_inpatient',
u'number_diagnoses', u'insulin', u'metformin', u'pioglitazone',
u'glimepiride', u'glipizide', u'repaglinide', u'nateglinide',
u'ComplexHbA1c', u'add_in_out', u'add_procs_meds', u'div_visits_time',
u'div_em_time', u'div_visit_med', u'div_em_med', u'sum_ch_med',
u'number_treatment_0', u'number_treatment_1', u'number_treatment_2',
u'number_treatment_3', u'Diabetis_3', u'Circulatory_3', u'Digestive_3',
u'Genitourinary_3', u'Poisoning_3', u'Muscoskeletal_3', u'Neoplasms_3',
u'Respiratory_3', u'readmitted'],
dtype='object')
all_extended_extra_diag_3_last_all_readmisssion_vs_none
DataSet:
**********
**********
SIZE: 1.0
NAME: all_extended_extra_diag_3_last_all_readmisssion_vs_none
(67182, 69)
ALL TRAIN: (47027, 68)
TRAIN: [0's: 27849 1's: 19178 ]
ALL TEST: (20155, 68)
TEST: [0's: 11936 1's: 8219 ]
Num experiment: 0 / 5
****************
FS: combine_fs
SM: none
CLS: logReg
METRIC: recall
Fitting 5 folds for each of 336 candidates, totalling 1680 fits
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 18.9s
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 1.6min
[Parallel(n_jobs=-1)]: Done 418 tasks | elapsed: 4.0min
[Parallel(n_jobs=-1)]: Done 768 tasks | elapsed: 7.4min
[Parallel(n_jobs=-1)]: Done 1218 tasks | elapsed: 12.4min
[Parallel(n_jobs=-1)]: Done 1680 out of 1680 | elapsed: 19.0min finished
TRAIN f1 (weighted): 0.559
TRAIN Precision [c=0,1]: [ 0.65943918 0.46622427]
TRAIN Recall [c=0,1]: [ 0.51764875 0.61179476]
TRAIN AUC: 0.565
TRAIN Sensibility: 0.611794764835
TRAIN Specificity: 0.517648748609
CV INNER metric: recall
CV INNER selected params ['balanced', 0.0001, 'l2', 5]
CV INNER score: 0.61126173097
CV OUTER f1-weighted score: 0.562 (+/-0.011)
CV OUTER prec score [c=0,1]: 0.652 (+/- 0.010), 0.480 (+/- 0.033)
CV OUTER rec score [c=0,1]: 0.576 (+/- 0.125), 0.549 (+/- 0.122)
CV OUTER AUC score: 0.592 (+/-0.012)
CV OUTER Sensibility score: 0.549 (+/-0.122)
CV OUTER Specificity score: 0.576 (+/-0.125)
Selected params (bests from CV) ['balanced', 0.0001, 'l2', 5]
TEST f1 (weighted): 0.562
TEST Precision [c=0,1]: [ 0.65919095 0.46801093]
TEST Recall [c=0,1]: [ 0.52697721 0.60433143]
TEST AUC: 0.566
TEST Sensibility: 0.604331427181
TEST Specificity: 0.526977211796
Confussion matrix:
| PRED
REAL--> v
[[6290 5646]
[3252 4967]]
Total time: 1159.915833
Num experiment: 1 / 5
****************
FS: combine_fs
SM: none
CLS: logReg
METRIC: f1
Fitting 5 folds for each of 336 candidates, totalling 1680 fits
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 15.5s
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 1.7min
[Parallel(n_jobs=-1)]: Done 418 tasks | elapsed: 4.0min
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
[Parallel(n_jobs=-1)]: Done 768 tasks | elapsed: 7.6min
[Parallel(n_jobs=-1)]: Done 1218 tasks | elapsed: 12.6min
[Parallel(n_jobs=-1)]: Done 1680 out of 1680 | elapsed: 19.3min finished
TRAIN f1 (weighted): 0.604
TRAIN Precision [c=0,1]: [ 0.67719775 0.51081742]
TRAIN Recall [c=0,1]: [ 0.6265216 0.566326 ]
TRAIN AUC: 0.596
TRAIN Sensibility: 0.56632599854
TRAIN Specificity: 0.626521598621
CV INNER metric: f1
CV INNER selected params ['balanced', 0.01, 'l1', 50]
CV INNER score: 0.534223569635
CV OUTER f1-weighted score: 0.602 (+/-0.003)
CV OUTER prec score [c=0,1]: 0.674 (+/- 0.003), 0.508 (+/- 0.003)
CV OUTER rec score [c=0,1]: 0.625 (+/- 0.003), 0.562 (+/- 0.006)
CV OUTER AUC score: 0.635 (+/-0.003)
CV OUTER Sensibility score: 0.562 (+/-0.006)
CV OUTER Specificity score: 0.625 (+/-0.003)
Selected params (bests from CV) ['balanced', 0.01, 'l1', 50]
TEST f1 (weighted): 0.605
TEST Precision [c=0,1]: [ 0.67811705 0.51109168]
TEST Recall [c=0,1]: [ 0.62516756 0.56904733]
TEST AUC: 0.597
TEST Sensibility: 0.569047329359
TEST Specificity: 0.625167560322
Confussion matrix:
| PRED
REAL--> v
[[7462 4474]
[3542 4677]]
Total time: 1176.53580594
Num experiment: 2 / 5
****************
FS: none
SM: none
CLS: logReg
METRIC: recall
Fitting 5 folds for each of 56 candidates, totalling 280 fits
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 17.7s
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 2.3min
[Parallel(n_jobs=-1)]: Done 280 out of 280 | elapsed: 4.9min finished
TRAIN f1 (weighted): 0.609
TRAIN Precision [c=0,1]: [ 0.68185529 0.51605182]
TRAIN Recall [c=0,1]: [ 0.62975331 0.57331317]
TRAIN AUC: 0.602
TRAIN Sensibility: 0.573313171342
TRAIN Specificity: 0.629753312507
CV INNER metric: recall
CV INNER selected params ['balanced', 0.01, 'l1']
CV INNER score: 0.571671880431
CV OUTER f1-weighted score: 0.606 (+/-0.002)
CV OUTER prec score [c=0,1]: 0.678 (+/- 0.002), 0.512 (+/- 0.002)
CV OUTER rec score [c=0,1]: 0.627 (+/- 0.004), 0.568 (+/- 0.006)
CV OUTER AUC score: 0.641 (+/-0.002)
CV OUTER Sensibility score: 0.568 (+/-0.006)
CV OUTER Specificity score: 0.627 (+/-0.004)
Selected params (bests from CV) ['balanced', 0.01, 'l1']
TEST f1 (weighted): 0.607
TEST Precision [c=0,1]: [ 0.68061634 0.51333406]
TEST Recall [c=0,1]: [ 0.6254189 0.57379243]
TEST AUC: 0.600
TEST Sensibility: 0.573792432169
TEST Specificity: 0.625418900804
Confussion matrix:
| PRED
REAL--> v
[[7465 4471]
[3503 4716]]
Total time: 312.163750887
Num experiment: 3 / 5
****************
FS: none
SM: none
CLS: logReg
METRIC: f1
Fitting 5 folds for each of 56 candidates, totalling 280 fits
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 17.7s
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 2.2min
[Parallel(n_jobs=-1)]: Done 280 out of 280 | elapsed: 4.9min finished
TRAIN f1 (weighted): 0.612
TRAIN Precision [c=0,1]: [ 0.68287698 0.51926814]
TRAIN Recall [c=0,1]: [ 0.63582175 0.57122745]
TRAIN AUC: 0.604
TRAIN Sensibility: 0.571227448118
TRAIN Specificity: 0.635821753025
CV INNER metric: f1
CV INNER selected params ['balanced', 0.05, 'l2']
CV INNER score: 0.540786419902
CV OUTER f1-weighted score: 0.609 (+/-0.004)
CV OUTER prec score [c=0,1]: 0.680 (+/- 0.004), 0.516 (+/- 0.004)
CV OUTER rec score [c=0,1]: 0.634 (+/- 0.002), 0.566 (+/- 0.007)
CV OUTER AUC score: 0.643 (+/-0.002)
CV OUTER Sensibility score: 0.566 (+/-0.007)
CV OUTER Specificity score: 0.634 (+/-0.002)
Selected params (bests from CV) ['balanced', 0.05, 'l2']
TEST f1 (weighted): 0.607
TEST Precision [c=0,1]: [ 0.67993833 0.5137474 ]
TEST Recall [c=0,1]: [ 0.62809987 0.57062903]
TEST AUC: 0.599
TEST Sensibility: 0.570629030296
TEST Specificity: 0.628099865952
Confussion matrix:
| PRED
REAL--> v
[[7497 4439]
[3529 4690]]
Total time: 314.38953805
Num experiment: 4 / 5
****************
FS: rfe_rf_fs
SM: none
CLS: logReg
METRIC: recall
Fitting 5 folds for each of 224 candidates, totalling 1120 fits
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 4.1min
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 24.2min
[Parallel(n_jobs=-1)]: Done 418 tasks | elapsed: 58.6min
[Parallel(n_jobs=-1)]: Done 768 tasks | elapsed: 106.7min
[Parallel(n_jobs=-1)]: Done 1120 out of 1120 | elapsed: 154.9min finished
TRAIN f1 (weighted): 0.552
TRAIN Precision [c=0,1]: [ 0.66123512 0.46229645]
TRAIN Recall [c=0,1]: [ 0.4925132 0.63359057]
TRAIN AUC: 0.563
TRAIN Sensibility: 0.633590572531
TRAIN Specificity: 0.492513196165
CV INNER metric: recall
CV INNER selected params [10, 'balanced', 0.001, 0.1, 'l1']
CV INNER score: 0.655509210984
CV OUTER f1-weighted score: 0.537 (+/-0.004)
CV OUTER prec score [c=0,1]: 0.658 (+/- 0.003), 0.453 (+/- 0.003)
CV OUTER rec score [c=0,1]: 0.454 (+/- 0.010), 0.657 (+/- 0.008)
CV OUTER AUC score: 0.586 (+/-0.004)
CV OUTER Sensibility score: 0.657 (+/-0.008)
CV OUTER Specificity score: 0.454 (+/-0.010)
Selected params (bests from CV) [10, 'balanced', 0.001, 0.1, 'l1']
TEST f1 (weighted): 0.555
TEST Precision [c=0,1]: [ 0.6622237 0.46431133]
TEST Recall [c=0,1]: [ 0.49949732 0.63000365]
TEST AUC: 0.565
TEST Sensibility: 0.630003650079
TEST Specificity: 0.499497319035
Confussion matrix:
| PRED
REAL--> v
[[5962 5974]
[3041 5178]]
Total time: 9483.84614182
Num experiment: 5 / 5
****************
FS: rfe_rf_fs
SM: none
CLS: logReg
METRIC: f1
Fitting 5 folds for each of 224 candidates, totalling 1120 fits
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
/home/ilmira/.conda/envs/readmision/lib/python2.7/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
'precision', 'predicted', average, warn_for)
[Parallel(n_jobs=-1)]: Done 18 tasks | elapsed: 4.1min
[Parallel(n_jobs=-1)]: Done 168 tasks | elapsed: 23.9min
[Parallel(n_jobs=-1)]: Done 418 tasks | elapsed: 58.3min
[Parallel(n_jobs=-1)]: Done 768 tasks | elapsed: 105.9min
[Parallel(n_jobs=-1)]: Done 1120 out of 1120 | elapsed: 153.9min finished
TRAIN f1 (weighted): 0.552
TRAIN Precision [c=0,1]: [ 0.66123512 0.46229645]
TRAIN Recall [c=0,1]: [ 0.4925132 0.63359057]
TRAIN AUC: 0.563
TRAIN Sensibility: 0.633590572531
TRAIN Specificity: 0.492513196165
CV INNER metric: f1
CV INNER selected params [10, 'balanced', 0.001, 0.1, 'l1']
CV INNER score: 0.535457744838
CV OUTER f1-weighted score: 0.537 (+/-0.004)
CV OUTER prec score [c=0,1]: 0.658 (+/- 0.003), 0.453 (+/- 0.003)
CV OUTER rec score [c=0,1]: 0.454 (+/- 0.010), 0.657 (+/- 0.008)
CV OUTER AUC score: 0.586 (+/-0.004)
CV OUTER Sensibility score: 0.657 (+/-0.008)
CV OUTER Specificity score: 0.454 (+/-0.010)
Selected params (bests from CV) [10, 'balanced', 0.001, 0.1, 'l1']
TEST f1 (weighted): 0.555
TEST Precision [c=0,1]: [ 0.6622237 0.46431133]
TEST Recall [c=0,1]: [ 0.49949732 0.63000365]
TEST AUC: 0.565
TEST Sensibility: 0.630003650079
TEST Specificity: 0.499497319035
Confussion matrix:
| PRED
REAL--> v
[[5962 5974]
[3041 5178]]
Total time: 9430.87909889