Memorizing the Unit Circle

This is a great, very easy technique for remembering the values of the sine and cosine of any angle on the unit circle.

All you have to remember is: $0, 1, 2, 3, \text{ and } 4$ and $\frac{\sqrt{x}}{2}$.

Credit and gratitude for this technique must be given to Eli Hibit ([@pwnphysics](https://twitter.com/pwnphysics)), who described it on his podcast, [PWN Physics](http://t.co/NPRzrTzIfD).


Sine

Beginning in Quadrant I with angle $\angle \theta = 0$, all you have to do is remember to replace $x$ in $\frac{\sqrt{x}}{2}$ with $0, 1, 2, 3, \text{ or } 4$:

Number $\text{Value of } \theta$ $\sin(\theta)$ Actual Value of $\sin$
0: $0$ $\sin(0) = \frac{\sqrt{\color{red}0}}{2}$ $0$
1: $\frac{\pi}{6}$ / $30\circ$ $\sin(\frac{\pi}{6}) = \frac{\sqrt{\color{red}1}}{2} = \frac{1}{2}$ $\frac{1}{2}$
2: $\frac{\pi}{4}$ / $45\circ$ $\sin(\frac{\pi}{4}) = \frac{\sqrt{\color{red}2}}{2}$ $\frac{\sqrt{2}}{2}$
3: $\frac{\pi}{3}$ / $60\circ$ $\sin(\frac{\pi}{3}) = \frac{\sqrt{\color{red}3}}{2}$ $\frac{\sqrt{3}}{2}$
4: $\frac{\pi}{2}$ / $90\circ$ $\sin(\frac{\pi}{2}) = \frac{\sqrt{\color{red}4}}{2} = \frac{2}{2} = 1$ $1$



For Quadrant II, the values count back down from $\frac{\sqrt{4}}{2}$ to $\frac{\sqrt{0}}{2}:$

Number $\text{Value of } \theta$ $\sin(\theta)$ Actual Value of $\sin$
4: $\frac{\pi}{2}$ / $90\circ$ $\sin(\frac{\pi}{2}) = \frac{\sqrt{\color{red}4}}{2} = \frac{2}{2} = 1$ $1$
3: $\frac{2\pi}{3} (= \frac{4\pi}{6})$ / $120\circ$ $\sin(\frac{\pi}{3}) = \frac{\sqrt{\color{red}3}}{2}$ $\frac{\sqrt{3}}{2}$
2: $\frac{\pi}{4}$ / $45\circ$ $\sin(\frac{\pi}{4}) = \frac{\sqrt{\color{red}2}}{2}$ $\frac{\sqrt{2}}{2}$
1: $\frac{\pi}{6}$ / $30\circ$ $\sin(\frac{\pi}{6}) = \frac{\sqrt{\color{red}1}}{2} = \frac{1}{2}$ $\frac{1}{2}$
0: $\frac{2\pi}{2} (= \pi)$ / $180\circ$ $\sin(\pi) = \frac{\sqrt{\color{red}0}}{2} = 0$ $1$

In [ ]: